• Previous Article
    Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients
  • CPAA Home
  • This Issue
  • Next Article
    Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $
July  2019, 18(4): 1869-1890. doi: 10.3934/cpaa.2019087

Global attractors for a mixture problem in one dimensional solids with nonlinear damping and sources terms

1. 

Institute of Exact and Natural Sciences, Doctoral Program in Mathematics, Federal University of Pará, Augusto corrêa Street, Number 01, 66075-110, Belém PA, Brazil

2. 

Federal University of Pará, Raimundo Santana Street s/n, Salinópolis PA, 68721-000, Brazil

Received  July 2018 Revised  July 2018 Published  January 2019

Fund Project: M. L. Santos is supported by CNPq Grant 302899/2015-4 and by CNPq Grant 401769-0 (Universal Project-2016)

This paper is concerned with long-time dynamics of binary mixture problem of solids, focusing on the interplay between nonlinear damping and source terms. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. We also establish the existence of a global attractor, and we study the fractal dimension and exponential attractors.

Citation: M. L. Santos, Mirelson M. Freitas. Global attractors for a mixture problem in one dimensional solids with nonlinear damping and sources terms. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1869-1890. doi: 10.3934/cpaa.2019087
References:
[1]

M. S. AlvesJ. E. Mu noz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Internat J. Solids Struct., 46 (2009), 1659-1666. doi: 10.1016/j.ijsolstr.2008.12.005. Google Scholar

[2]

M. S. AlvesJ. E. Mu noz RiveraM. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Internat J. Solids Struct., 24 (2009), 4151-4162. Google Scholar

[3]

R. J. Atkin and R. E. Craine, Continuum theories of mixtures: basic theory and hystorical development, Quat. J. Mech. Appl. Math., 29 (1976), 209-243. doi: 10.1093/qjmam/29.2.209. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992. Google Scholar

[5]

V. Barbu, Analysis and Control of Nonlinear Infnite-Dimensional Systems, vol. 190, Mathematics in Science and Engineering, Academic Press Inc, Boston, 1993., Google Scholar

[6]

A. Bedford and D. S. Drumheller, Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863-960. doi: 10.1016/0020-7225(83)90071-X. Google Scholar

[7]

R. M. Bowen, Continuum physics iii: theory of mixtures, a.c. eringen, ed., Academic Press, New York, (1976), 689–722. Google Scholar

[8]

Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689–722.Google Scholar

[9]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132. Google Scholar

[10]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9. Google Scholar

[11]

B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete and Continuous Dynamical Systems, 37 (2017), 4729-4751. doi: 10.3934/dcds.2017203. Google Scholar

[12]

B. Feng, T. F. Ma, R. N. Monteiro and C. A. Raposo, Dynamics of laminated timoshenko beams, J Dyn Diff Equat, (2017). doi: 10.1007/s10884-017-9604-4. Google Scholar

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical surveys and monographs, American Mathematival Society, Providence, RI, 1988. Google Scholar

[14]

D. Iesan and R. quintanilla, Existence and continuous dependence results in the theory of interacting continua, J. Ealsticity, 36 (1994), 85-98. doi: 10.1007/BF00042493. Google Scholar

[15]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418. Google Scholar

[16]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495. doi: 10.1137/15M1039894. Google Scholar

[17]

F. Martinez and R. quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 236-277. Google Scholar

[18]

P. PeiM. A. Rammaha and D. Toundykov, Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations, Nonlinear Analysis, 105 (2014), 62-85. doi: 10.1016/j.na.2014.03.024. Google Scholar

[19]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360. Google Scholar

[20]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SIAM, Philadelphia, PA, 1995.Google Scholar

show all references

References:
[1]

M. S. AlvesJ. E. Mu noz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Internat J. Solids Struct., 46 (2009), 1659-1666. doi: 10.1016/j.ijsolstr.2008.12.005. Google Scholar

[2]

M. S. AlvesJ. E. Mu noz RiveraM. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Internat J. Solids Struct., 24 (2009), 4151-4162. Google Scholar

[3]

R. J. Atkin and R. E. Craine, Continuum theories of mixtures: basic theory and hystorical development, Quat. J. Mech. Appl. Math., 29 (1976), 209-243. doi: 10.1093/qjmam/29.2.209. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992. Google Scholar

[5]

V. Barbu, Analysis and Control of Nonlinear Infnite-Dimensional Systems, vol. 190, Mathematics in Science and Engineering, Academic Press Inc, Boston, 1993., Google Scholar

[6]

A. Bedford and D. S. Drumheller, Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863-960. doi: 10.1016/0020-7225(83)90071-X. Google Scholar

[7]

R. M. Bowen, Continuum physics iii: theory of mixtures, a.c. eringen, ed., Academic Press, New York, (1976), 689–722. Google Scholar

[8]

Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689–722.Google Scholar

[9]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132. Google Scholar

[10]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9. Google Scholar

[11]

B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete and Continuous Dynamical Systems, 37 (2017), 4729-4751. doi: 10.3934/dcds.2017203. Google Scholar

[12]

B. Feng, T. F. Ma, R. N. Monteiro and C. A. Raposo, Dynamics of laminated timoshenko beams, J Dyn Diff Equat, (2017). doi: 10.1007/s10884-017-9604-4. Google Scholar

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical surveys and monographs, American Mathematival Society, Providence, RI, 1988. Google Scholar

[14]

D. Iesan and R. quintanilla, Existence and continuous dependence results in the theory of interacting continua, J. Ealsticity, 36 (1994), 85-98. doi: 10.1007/BF00042493. Google Scholar

[15]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418. Google Scholar

[16]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495. doi: 10.1137/15M1039894. Google Scholar

[17]

F. Martinez and R. quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 236-277. Google Scholar

[18]

P. PeiM. A. Rammaha and D. Toundykov, Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations, Nonlinear Analysis, 105 (2014), 62-85. doi: 10.1016/j.na.2014.03.024. Google Scholar

[19]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360. Google Scholar

[20]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SIAM, Philadelphia, PA, 1995.Google Scholar

[1]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[2]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[3]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[4]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[5]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[6]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[7]

Dung Le. Exponential attractors for a chemotaxis growth system on domains of arbitrary dimension. Conference Publications, 2003, 2003 (Special) : 536-543. doi: 10.3934/proc.2003.2003.536

[8]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[9]

Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

[10]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349

[11]

Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255

[12]

Lorena Bociu, Irena Lasiecka. Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 835-860. doi: 10.3934/dcds.2008.22.835

[13]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[14]

Mirelson M. Freitas, Alberto L. C. Costa, Geraldo M. Araújo. Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. Communications on Pure & Applied Analysis, 2020, 19 (2) : 785-809. doi: 10.3934/cpaa.2020037

[15]

Igor Kukavica. On Fourier parametrization of global attractors for equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 553-560. doi: 10.3934/dcds.2005.13.553

[16]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[17]

Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247

[18]

José A. Langa, Alain Miranville, José Real. Pullback exponential attractors. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1329-1357. doi: 10.3934/dcds.2010.26.1329

[19]

Michele Coti Zelati, Piotr Kalita. Smooth attractors for weak solutions of the SQG equation with critical dissipation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1857-1873. doi: 10.3934/dcdsb.2017110

[20]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (85)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]