This paper is concerned with long-time dynamics of binary mixture problem of solids, focusing on the interplay between nonlinear damping and source terms. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. We also establish the existence of a global attractor, and we study the fractal dimension and exponential attractors.
Citation: |
[1] |
M. S. Alves, J. E. Mu noz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Internat J. Solids Struct., 46 (2009), 1659-1666.
doi: 10.1016/j.ijsolstr.2008.12.005.![]() ![]() ![]() |
[2] |
M. S. Alves, J. E. Mu noz Rivera, M. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Internat J. Solids Struct., 24 (2009), 4151-4162.
![]() |
[3] |
R. J. Atkin and R. E. Craine, Continuum theories of mixtures: basic theory and hystorical development, Quat. J. Mech. Appl. Math., 29 (1976), 209-243.
doi: 10.1093/qjmam/29.2.209.![]() ![]() ![]() |
[4] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992.
![]() ![]() |
[5] |
V. Barbu, Analysis and Control of Nonlinear Infnite-Dimensional Systems, vol. 190, Mathematics in Science and Engineering, Academic Press Inc, Boston, 1993.,
![]() ![]() |
[6] |
A. Bedford and D. S. Drumheller, Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863-960.
doi: 10.1016/0020-7225(83)90071-X.![]() ![]() ![]() |
[7] |
R. M. Bowen, Continuum physics iii: theory of mixtures, a.c. eringen, ed., Academic Press, New York, (1976), 689–722.
![]() ![]() |
[8] |
Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689–722.
![]() |
[9] |
I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.
doi: 10.1081/PDE-120016132.![]() ![]() ![]() |
[10] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010.
doi: 10.1007/978-0-387-87712-9.![]() ![]() ![]() |
[11] |
B. Feng, On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors, Discrete and Continuous Dynamical Systems, 37 (2017), 4729-4751.
doi: 10.3934/dcds.2017203.![]() ![]() ![]() |
[12] |
B. Feng, T. F. Ma, R. N. Monteiro and C. A. Raposo, Dynamics of laminated timoshenko beams, J Dyn Diff Equat, (2017).
doi: 10.1007/s10884-017-9604-4.![]() ![]() ![]() |
[13] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical surveys and monographs, American Mathematival Society, Providence, RI, 1988.
![]() ![]() |
[14] |
D. Iesan and R. quintanilla, Existence and continuous dependence results in the theory of interacting continua, J. Ealsticity, 36 (1994), 85-98.
doi: 10.1007/BF00042493.![]() ![]() ![]() |
[15] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511569418.![]() ![]() ![]() |
[16] |
T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495.
doi: 10.1137/15M1039894.![]() ![]() ![]() |
[17] |
F. Martinez and R. quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 236-277.
![]() ![]() |
[18] |
P. Pei, M. A. Rammaha and D. Toundykov, Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations, Nonlinear Analysis, 105 (2014), 62-85.
doi: 10.1016/j.na.2014.03.024.![]() ![]() ![]() |
[19] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[20] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SIAM, Philadelphia, PA, 1995.
![]() |