-
Previous Article
Spike layer solutions for a singularly perturbed Neumann problem: Variational construction without a nondegeneracy
- CPAA Home
- This Issue
-
Next Article
Global attractors for a mixture problem in one dimensional solids with nonlinear damping and sources terms
Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients
1. | School of Mathematical Sciences and Mathematical Institute, Nanjing Normal University, Nanjing, 210023, China |
2. | School of Mathematics and Physics, Anhui University of Technology, Maanshan 243032, China |
In this paper, we establish the local well-posedness of low regularity solutions to the general second order strictly hyperbolic equation of divergence form $ \partial _t(a_0 \partial _t u)+ \mathop \sum \limits_{j = 1}^n [ \partial _t(a_j \partial _j u)+ \partial _j(a_j \partial _t u)] -\mathop \sum \limits_{j,k = 1}^n \partial _j(a_{jk} \partial _k u) $ $ +b_0 \partial _t u+ \partial _t(c_0u)+ \mathop \sum \limits_{j = 1}^n [b_j \partial _ju+ \partial _j(c_ju)] +du = f $ in domain $ \Omega = (0, T_0)\times \mathbb R ^n $, where the coefficients $ a_0, a_j, a_{jk}\in L^\infty( \Omega )\cap LL(\bar\Omega) $ $ (1\le j, k\le n) $, $ b_0, c_0, b_j, c_j\in L^\infty( \Omega )\cap C^ \alpha (\bar\Omega) $ $ (1\le j\le n) $ for $ \alpha \in(\frac{1}{2},1) $, $ d\in L^\infty(\Omega) $, $ (u(0,x), Xu(0,x))\in (H^{1- \theta +\beta \log}, H^{- \theta +\beta \log}) $ with $ \theta\in (1- \alpha , \alpha ) $, $ \beta\in\Bbb R $, and $ Xu = a_0 \partial _tu+ \mathop \sum \limits_{j = 1}^n a_j \partial _ju $. Compared with previous references, except a little more general initial data in the space $ (H^{1- \theta +\beta \log}, H^{- \theta +\beta \log}) $ (only $ \beta = 0 $ is considered as before), we improve both the lifespan of $ u $ up to the precise number $ T^* $ and the range of $ \theta $ to the left endpoint $ 1- \alpha $ under some suitable conditions.
References:
[1] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Velag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
J. M. Bony,
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, (French) [Symbolic calculus and propagation of singularities for non-linear partial differential equations], Ann.Sci. École Norm. Sup., 14 (1981), 209-246.
|
[3] |
M. Cicognani and F. Colombini,
Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem, J. Diff. Eqs., 221 (2006), 143-157.
doi: 10.1016/j.jde.2005.06.019. |
[4] |
F. Colombini, E. De Giorgi and S. Spagnolo,
Sur les équations hyperboliques avec des coefficients qui ne ${\acute{\rm{q}}}$ue du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 511-559.
|
[5] |
F. Colombini, E. Jannelli and S. Spagnolo,
Nonuniqueness in hyperbolic cauchy problems, Ann. of Math., 126 (1987), 495-524.
doi: 10.2307/1971359. |
[6] |
F. Colombini and N. Lerner,
Operators with non-Lipschitz coefficients, Duke Math. J., 77 (1995), 657-698.
doi: 10.1215/S0012-7094-95-07721-7. |
[7] |
F. Colombini and G. Métivier, The cauchy problem for wave equations with non lipschitz
coefficients; Application to continuation of solutions of some nonlinear wave equations, Ann. Sci. Éc. Norm. Supér.(4) , 41 (2008), 177–220.
doi: 10.24033/asens.2066. |
[8] |
F. Colombini and D. D. Santo,
A note on hyperbolic operators with log-zygmund coefficients, J. Math. Sci. Univ. Tokyo, 16 (2009), 95-111.
|
[9] |
F. Colombini, D.D. Santo, F. Fanelli and G. Métivier,
Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients, Comm. Partial Differential Equations, 38 (2013), 1791-1817.
doi: 10.1080/03605302.2013.795968. |
[10] |
F. Colombini and S. Spagnolo, Some examples of hyperbolic equations without local solvability, Ann, Sci. Ecole Norm. Suph.(4), 22 (1989), 109–125. |
[11] |
L. Hörmander, Linear Partial Differential Operators, Springer-Velag, Berlin Heidelberg, 1976. |
[12] |
A. E. Hurd and D. H. Sattinger,
Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Amer. Math. Soc., 132 (1968), 159-174.
doi: 10.2307/1994888. |
[13] |
E. Jannelli,
Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl., 140 (1985), 133-145.
doi: 10.1007/BF01776846. |
[14] |
T. Nishitani, Sur les équations hyperboliques á coefficients höldériens en t et de classe de Gevrey en x, Bull. Sci. Math., 107 (1983), 113–138., |
[15] |
J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/133. |
[16] |
M. E. Taylor, Tools for PDE : Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000. |
show all references
References:
[1] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Velag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
J. M. Bony,
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, (French) [Symbolic calculus and propagation of singularities for non-linear partial differential equations], Ann.Sci. École Norm. Sup., 14 (1981), 209-246.
|
[3] |
M. Cicognani and F. Colombini,
Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem, J. Diff. Eqs., 221 (2006), 143-157.
doi: 10.1016/j.jde.2005.06.019. |
[4] |
F. Colombini, E. De Giorgi and S. Spagnolo,
Sur les équations hyperboliques avec des coefficients qui ne ${\acute{\rm{q}}}$ue du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 511-559.
|
[5] |
F. Colombini, E. Jannelli and S. Spagnolo,
Nonuniqueness in hyperbolic cauchy problems, Ann. of Math., 126 (1987), 495-524.
doi: 10.2307/1971359. |
[6] |
F. Colombini and N. Lerner,
Operators with non-Lipschitz coefficients, Duke Math. J., 77 (1995), 657-698.
doi: 10.1215/S0012-7094-95-07721-7. |
[7] |
F. Colombini and G. Métivier, The cauchy problem for wave equations with non lipschitz
coefficients; Application to continuation of solutions of some nonlinear wave equations, Ann. Sci. Éc. Norm. Supér.(4) , 41 (2008), 177–220.
doi: 10.24033/asens.2066. |
[8] |
F. Colombini and D. D. Santo,
A note on hyperbolic operators with log-zygmund coefficients, J. Math. Sci. Univ. Tokyo, 16 (2009), 95-111.
|
[9] |
F. Colombini, D.D. Santo, F. Fanelli and G. Métivier,
Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients, Comm. Partial Differential Equations, 38 (2013), 1791-1817.
doi: 10.1080/03605302.2013.795968. |
[10] |
F. Colombini and S. Spagnolo, Some examples of hyperbolic equations without local solvability, Ann, Sci. Ecole Norm. Suph.(4), 22 (1989), 109–125. |
[11] |
L. Hörmander, Linear Partial Differential Operators, Springer-Velag, Berlin Heidelberg, 1976. |
[12] |
A. E. Hurd and D. H. Sattinger,
Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Amer. Math. Soc., 132 (1968), 159-174.
doi: 10.2307/1994888. |
[13] |
E. Jannelli,
Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl., 140 (1985), 133-145.
doi: 10.1007/BF01776846. |
[14] |
T. Nishitani, Sur les équations hyperboliques á coefficients höldériens en t et de classe de Gevrey en x, Bull. Sci. Math., 107 (1983), 113–138., |
[15] |
J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/133. |
[16] |
M. E. Taylor, Tools for PDE : Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000. |
[1] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[2] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[3] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[4] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[5] |
Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261 |
[6] |
Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903 |
[7] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[8] |
Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081 |
[9] |
Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126 |
[10] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[11] |
Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010 |
[12] |
Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122 |
[13] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[14] |
Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034 |
[15] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[16] |
Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 |
[17] |
A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 |
[18] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[19] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[20] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]