We consider the following singularly perturbed problem
$ \begin{equation*} \varepsilon ^2 \Delta u - u + f(u) = 0,\ \ \ \, u>0 \text{ in } \Omega, \ \ \ \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega. \end{equation*} $
Existence of a solution with a spike layer near a min-max critical point of the mean curvature on the boundary $ \partial \Omega $ is well known when a nondegeneracy for a limiting problem holds. In this paper, we use a variational method for the construction of such a solution which does not depend on the nondengeneracy for the limiting problem. By a purely variational approach, we construct the solution for an optimal class of nonlinearities $ f $ satisfying the Berestycki-Lions conditions.
Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Elsevier/Academic Press,
Amsterdam, 2003.
![]() ![]() |
[2] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() ![]() |
[3] |
P. Bates, K. Lu and C. Zeng, Approximately invariant manifolds and global dynamics of spike states, Invent. Math., 174 (2008), 355-433.
doi: 10.1007/s00222-008-0141-y.![]() ![]() ![]() |
[4] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/bf00250555.![]() ![]() ![]() |
[5] |
J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations, 22 (1997), 1731-1769.
doi: 10.1080/03605309708821317.![]() ![]() ![]() |
[6] |
J. Byeon, Singularly perturbed nonlinear Neumann problems with a general nonlinearity, J. Differential Equations, 244 (2008), 2473-2497.
doi: 10.1016/j.jde.2008.02.024.![]() ![]() ![]() |
[7] |
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185 (2007), 185-200.
doi: 10.1007/s00205-006-0019-3.![]() ![]() ![]() |
[8] |
J. Byeon and Y. Lee, Singularly perturbed nonlinear Neumann problems under the conditions of Berestycki and Lions, J. Differential Equations, 252 (2012), 3848-3872.
doi: 10.1016/j.jde.2011.12.013.![]() ![]() ![]() |
[9] |
J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations, 24 (2005), 459-477.
doi: 10.1007/s00526-005-0339-4.![]() ![]() ![]() |
[10] |
J. Byeon and K. Tanaka, Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential, J. Eur. Math. Soc., 15 (2013), 1859-1899.
doi: 10.4171/jems/407.![]() ![]() ![]() |
[11] |
J. Byeon and K. Tanaka, Multi-bump positive solutions for a nonlinear elliptic problem in expanding tubular domains, Calc. Var. Partial Differential Equations, 50 (2014), 365-397.
doi: 10.1007/s00526-013-0639-z.![]() ![]() ![]() |
[12] |
C. Cortázar, M. Elgueta and P. Felmer, Uniqueness of positive solutions of $Δu+f(u) = 0$ in $ \mathbb {R} ^N, N \le 3$, Arch. Ration. Mech. Anal., 142 (1998), 127-141.
doi: 10.1007/s002050050086.![]() ![]() ![]() |
[13] |
V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $ \mathbb {R} ^N$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.
doi: 10.1002/cpa.3160451002.![]() ![]() ![]() |
[14] |
E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262.
doi: 10.2140/pjm.1999.189.241.![]() ![]() ![]() |
[15] |
J. Dávila, M. del Pino and I. Guerra, Non-uniqueness of positive ground states of non-linear Schrödinger equations, Proc. Lond. Math. Soc., 106 (2013), 318-344.
doi: 10.1112/plms/pds038.![]() ![]() ![]() |
[16] |
M. del Pino and P. L. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J., 48 (1999), 883-898.
doi: 10.1512/iumj.1999.48.1596.![]() ![]() ![]() |
[17] |
M. del Pino, P. L. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal., 31 (1999), 63-79.
doi: 10.1137/S0036141098332834.![]() ![]() ![]() |
[18] |
A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234.![]() ![]() |
[19] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
![]() ![]() |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^nd$ edition, Springer-Verlag, Berlin, 1983.
![]() ![]() |
[21] |
C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9.![]() ![]() ![]() |
[22] |
L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ \mathbb {R} ^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.
doi: 10.1090/S0002-9939-02-06821-1.![]() ![]() ![]() |
[23] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theo. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[24] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $ \mathbb {R} ^n$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
[25] |
Y. Lee and J. Seok, Multiple interior and boundary peak solutions to singularly perturbed nonlinear Neumann problems under the Berestycki–Lions condition, Math. Ann., 367 (2017), 881-928.
doi: 10.1007/s00208-016-1412-3.![]() ![]() ![]() |
[26] |
Y. Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations, 21 (1998), 487-545.
doi: 10.1080/03605309808821354.![]() ![]() ![]() |
[27] |
P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case, part Ⅱ, Ann. Inst. H. Poincaré, 1 (1984), 223-283.
![]() ![]() |
[28] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
[29] |
F. H. Lin, W. M. Ni and J. C. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139.![]() ![]() ![]() |
[30] |
F. Mahmoudi and A. Malchiodi, Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., 209 (2007), 460-525.
doi: 10.1016/j.aim.2006.05.014.![]() ![]() ![]() |
[31] |
A. Malchiodi, Construction of multidimensional spike-layers, Discrete Contin. Dyn. Syst., 14 (2006), 187-202.
doi: 10.3934/dcds.2006.14.187.![]() ![]() ![]() |
[32] |
A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.
doi: 10.1215/S0012-7094-04-12414-5.![]() ![]() ![]() |
[33] |
W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.
![]() ![]() |
[34] |
W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
doi: 10.1002/cpa.3160440705.![]() ![]() ![]() |
[35] |
W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4.![]() ![]() ![]() |
[36] |
A. Turing, The chemical basis of morphogenesis, Philos. Trans. Royal Soc. (B), 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.![]() ![]() |
[37] |
J. C. Wei, On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218.![]() ![]() ![]() |