We study the Cauchy problem of the damped wave equation
$ \begin{align*} \partial_{t}^2 u - \Delta u + \partial_t u = 0 \end{align*} $
and give sharp $ L^p $-$ L^q $ estimates of the solution for $ 1\le q \le p < \infty\ (p\neq 1) $ with derivative loss. This is an improvement of the so-called Matsumura estimates. Moreover, as its application, we consider the nonlinear problem with initial data in $ (H^s\cap H_r^{\beta}) \times (H^{s-1} \cap L^r) $ with $ r \in (1,2] $, $ s\ge 0 $, and $ \beta = (n-1)|\frac{1}{2}-\frac{1}{r}| $, and prove the local and global existence of solutions. In particular, we prove the existence of the global solution with small initial data for the critical nonlinearity with the power $ 1+\frac{2r}{n} $, while it is known that the critical power $ 1+\frac{2}{n} $ belongs to the blow-up region when $ r = 1 $. We also discuss the asymptotic behavior of the global solution in supercritical cases. Moreover, we present blow-up results in subcritical cases. We give estimates of lifespan by an ODE argument.
Citation: |
[1] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[2] | J. Chen, D. Fan and C. Zhang, Space-time estimates on damped fractional wave equation, Abstr. Appl. Anal., (2014). doi: 10.1155/2014/428909. |
[3] | J. Chen, D. Fan and C. Zhang, Estimates for damped fractional wave equations and applications, Electronic Journal of Differential Equations, 2015 (2015), 1-14. |
[4] | F. M. Christ and M. I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109. doi: 10.1016/0022-1236(91)90103-C. |
[5] | K. Fujiwara, M. Ikeda and Y. Wakasugi, Estimates of lifespan and blow-up rates for the wave equation with a time-dependent damping and a power-type nonlinearity, Funkcial. Ekvac., to appear, arXiv: 1609.01035v2. |
[6] | K. Fujiwara and T. Ozawa, Finite time blowup of solutions to the nonlinear Schrödinger equation without gauge invariance, J. Math. Phys., 57 (2016), 1-8. doi: 10.1063/1.4960725. |
[7] | M.-H. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, 79, Birkhäuser, Boston, MA, 2010. doi: 10.1007/978-0-8176-4651-6. |
[8] | L. Grafakos, Classical Fourier Analysis, Third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. ⅹⅷ+638 pp. doi: 10.1007/978-1-4939-1194-3. |
[9] | N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with super critical nonlinearities, Differential Integral Equations, 17 (2004), 637-652. |
[10] | N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with a critical nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 1165-1185. doi: 10.1090/S0002-9947-05-03818-3. |
[11] | N. Hayashi, E. I. Kaikina and P. I. Naumkin, On the critical nonlinear damped wave equation with large initial data, J. Math. Anal. Appl., 334 (2007), 1400-1425. doi: 10.1016/j.jmaa.2007.01.021. |
[12] | N. Hayashi and P. I. Naumkin, Damped wave equation with a critical nonlinearity in higher space dimensions, J. Math. Appl. Anal., 446 (2017), 801-822. doi: 10.1016/j.jmaa.2016.09.005. |
[13] | T. Hosono and T. Ogawa, Large time behavior and $L^p$-$L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203 (2004), 82-118. doi: 10.1016/j.jde.2004.03.034. |
[14] | M. Ikeda, T. Inui and Y. Wakasugi, The Cauchy problem for the nonlinear damped wave equation with slowly decaying data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), no. 2, Art. 10, 53 pp. doi: 10.1007/s00030-017-0434-1. |
[15] | R. Ikehata, Y. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbf R^N$ with lower power nonlinearities, J. Math. Soc. Japan, 56 (2004), 365-373. |
[16] | R. Ikehata, K. Nishihara and H. Zhao, Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption, J. Differential Equations, 226 (2006), 1-29. |
[17] | R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbf R^N$, J. Math. Anal. Appl., 269 (2002), 87-97. doi: 10.1016/S0022-247X(02)00021-5. |
[18] | R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbf R^N$ with noncompactly supported initial data, Nonlinear Anal., 61 (2005), 1189-1208. doi: 10.1016/j.na.2005.01.097. |
[19] | G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143 (2000), 175-197. doi: 10.4064/sm-143-2-175-197. |
[20] | S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc. Japan, 47 (1995), 617-653. doi: 10.2969/jmsj/04740617. |
[21] | M. Kirane and M. Qafsaoui, Fujita's exponent for a semilinear wave equation with linear damping, Adv. Nonlinear Stud., 2 (2002), 41-49. doi: 10.1515/ans-2002-0103. |
[22] | T.-T. Li and Y. Zhou, Breakdown of solutions to $\square u+u_t=|u|^{1+\alpha}$, Discrete Contin. Dynam. Syst., 1 (1995), 503-520. doi: 10.3934/dcds.1995.1.503. |
[23] | P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191 (2003), 445-469. doi: 10.1016/S0022-0396(03)00026-3. |
[24] | A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189. doi: 10.2977/prims/1195190962. |
[25] | A. Miyachi, On some estimates for the wave equation in $L^p$ and $H^p$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 331-354. |
[26] | M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342. doi: 10.1007/BF02572407. |
[27] | T. Narazaki, $L^p$-$L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626. doi: 10.2969/jmsj/1191418647. |
[28] | T. Narazaki, Global solutions to the Cauchy problem for a system of damped wave equations, Differential and Integral Equations, 24 (2011), 569-600. |
[29] | T. Narazaki and K. Nishihara, Asymptotic behavior of solutions for the damped wave equation with slowly decaying data, J. Math. Anal. Appl., 338 (2008), 803-819. doi: 10.1016/j.jmaa.2007.05.068. |
[30] | K. Nishihara, $L^p$-$L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244 (2003), 631-649. doi: 10.1007/s00209-003-0516-0. |
[31] | J. C. Peral, $L^p$ estimates for the wave equation, J. Funct. Anal., 36 (1980), 114-145. doi: 10.1016/0022-1236(80)90110-X. |
[32] | S. Sakata and Y. Wakasugi, Movement of time-delayed hot spots in Euclidean space, Math. Z., 285 (2017), 1007-1040. doi: 10.1007/s00209-016-1735-5. |
[33] | S. Sjöstrand, On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa, 24 (1970), 331-348. |
[34] | G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489. doi: 10.1006/jdeq.2000.3933. |
[35] | F. B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40. doi: 10.1007/BF02761845. |
[36] | H. Yang and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math., 124 (2000), 415-433. doi: 10.1016/S0007-4497(00)00141-X. |
[37] | Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109-114. doi: 10.1016/S0764-4442(01)01999-1. |