We consider the chemotaxis-haptotaxis system
in a bounded convex domain
$ \begin{eqnarray*} f(s) \le K_f (s+1)^\alpha \qquad \mbox{for all } s\ge 0 \end{eqnarray*} $
with some
It is asserted that whenever
$ \begin{eqnarray*} \alpha < \left\{ \begin{array}{ll} \frac{3}{2} \qquad & \mbox{if } n = 1, \\ \frac{n+6}{2(n+2)} \qquad & \mbox{if } n\ge 2, \end{array} \right. \end{eqnarray*} $
the Neumann boundary problem with suitably regular initial data possesses a unique global and bounded classical solution.
Citation: |
[1] | N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. doi: 10.1142/S021820251550044X. |
[2] | X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis system, Z. Angew. Math. Phys., 67 (2016), 11. doi: 10.1007/s00033-015-0601-3. |
[3] | Z. Chen and Y. Tao, Large-data solution in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Appl Math, (2018). doi: 10.1007/s10440-018-0216-8. |
[4] | M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 18 (2005), 1685–1734. doi: 10.1142/S0218202505000947. |
[5] | M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399–439. doi: 10.3934/nhm.2006.1.399. |
[6] | M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. doi: 10.1137/S0036141001385046. |
[7] | A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138–163. doi: 10.1016/S0022-247X(02)00147-6. |
[8] | Y. Giga and H. Sohr, Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72–94. doi: 10.1016/0022-1236(91)90136-S. |
[9] | M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647–1669. doi: 10.1080/03605309708821314. |
[10] | T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. Sci., 23 (2013), 165–198. doi: 10.1142/S0218202512500480. |
[11] | D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52–107. doi: 10.1016/j.jde.2004.10.022. |
[12] | O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23 (1968), Providence, RI. |
[13] | Y. Li and J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595. doi: 10.1088/0951-7715/29/5/1564. |
[14] | P. L. Lions, Résolution de problémes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335–353. doi: 10.1007/BF00249679. |
[15] | P. Y. H. Pang and Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 263 (2017), 1269–1292. doi: 10.1016/j.jde.2017.03.016. |
[16] | P. Y. H. Pang and Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Mod. Meth. Appl. Sci., 28 (2018), 2211–2235. doi: 10.1142/S0218202518400134. |
[17] | C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. doi: 10.1137/13094058X. |
[18] | Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69. doi: 10.1016/j.jmaa.2008.12.039. |
[19] | Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382v1. |
[20] | Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533–1558. doi: 10.1137/090751542. |
[21] | Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinb. Sect A, 144 (2014), 1067–1084. doi: 10.1017/S0308210512000571. |
[22] | Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239. doi: 10.1088/0951-7715/27/6/1225. |
[23] | Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Eq., 257 (2014), 784–815. doi: 10.1016/j.jde.2014.04.014. |
[24] | Y. Tao and M. Winkler, Large time behavior in a mutidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250. doi: 10.1137/15M1014115. |
[25] | C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694–1713. doi: 10.1137/060655122. |
[26] | L. Wang, C. Mu, X. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Math. Meth. Appl. Sci., 40 (2017), 3000–3016. doi: 10.1002/mma.4216. |
[27] | Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960–6988. doi: 10.1016/j.jde.2016.01.017. |
[28] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Eq., 248 (2010), 2889–2905. doi: 10.1016/j.jde.2010.02.008. |
[29] | M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differential Eq., 264 (2018), 6109–6151. doi: 10.1016/j.jde.2018.01.027. |
[30] | M. Winkler, A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization, Preprint. |
[31] | J. Zheng, Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discr. Cont. Dyn. Syst., 37 (2017), 627–643. doi: 10.3934/dcds.2017026. |