\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction

  • * Corresponding author

    * Corresponding author 
The first author is supported by Grant CNPq/Brazil.
Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • We study analytically and numerically the existence and orbital stability of the peak-standing-wave solutions for the cubic-quintic nonlinear Schródinger equation with a point interaction determined by the delta of Dirac. We study the cases of attractive-attractive and attractive-repulsive nonlinearities and we recover some results in the literature. Via a perturbation method and continuation argument we determine the Morse index of some specific self-adjoint operators that arise in the stability study. Orbital instability implications from a spectral instability result are established. In the case of an attractive-attractive case and an focusing interaction we give an approach based in the extension theory of symmetric operators for determining the Morse index.

    Mathematics Subject Classification: Primary: 35Q55, 37K40, 37K45; Secondary: 47E05, 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The peak solutions $ \phi_{\omega, Z} $ for $ Z<0 $ and $ Z>0 $

    Figure 2.  Function $ \omega\to-||\phi_{\omega, Z}||^2 $ for specific values of $ Z $. Left picture, $ \omega\in(-6, -1) $, $ Z = -0.86 $. Right picture, $ \omega\in(-6, -1) $, $ Z = -0.9 $

    Figure 3.  Function $ (\omega, Z)\to-\partial_\omega||\phi_{\omega, Z}||^2 $, for $ \omega\in(-50, -2) $. Left picture for $ Z\in(-0.9, -0.8) $. Right picture for $ Z\in(-0.8, -0.7) $

    Figure 4.  Function $ \omega\to-\partial_\omega||\phi_{\omega, Z}||^2 $ for specific values of $ Z $. Left picture, $ Z = -0.86602 $ and $ \omega\in(-10, -0.8) $. Right picture, $ Z = -0.86603 $ and $ \omega\in(-5, -1) $

    Figure 5.  The function $ \omega\to-||\phi_{\omega, Z}||^2 $, for $ \lambda_1 = 2 $, $ \lambda_2 = -1 $ and $ \omega\in (-\frac34, -\frac14) $. Left picture, $ Z = -1 $. Right picture, $ Z = 1 $

    Figure 6.  The function $ \omega\to-||\phi_{\omega, Z}||^2 $, for $ \lambda_1 = 4 $, $ \lambda_2 = -2 $ and $ \omega\in (-\frac32, -\frac14) $. Left picture, $ Z = -1 $. Right picture, $ Z = 1 $

  • [1] R. AdamiC. CacciapuotiD. Finco and D. Noja, Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy, J. Differential Equations, 260 (2016), 7397-7415.  doi: 10.1016/j.jde.2016.01.029.
    [2] R. AdamiC. CacciapuotiD. Finco and D. Noja, Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations, 257 (2014), 3738-3777.  doi: 10.1016/j.jde.2014.07.008.
    [3] R. AdamiD. Noja and N. Visciglia, Constrained energy minimization and ground states for NLS with point defects, Discr. Cont. Dyn. Syst.- B, 18 (2013), 155-1188.  doi: 10.3934/dcdsb.2013.18.1155.
    [4] G. Agrawal, Nonlinear Fiber Optics, Academic Press, 4th edition, 2007.
    [5] S. AlbeverioZ. Brzezniak and L. Dabrowski, Fundamental solution of the heat and Schródinger equations with point interaction, J. Funct. Anal., 130 (1995), 220-254.  doi: 10.1006/jfan.1995.1068.
    [6] S. Albeverio, F. Gesztesy, R. Krohn and H. Holden, Solvable Models in Quantum Mechanics, AMS Chelsea publishing, 2004.,
    [7] S. Albeverio and  P. KurasovSingular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series 271, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511758904.
    [8] J. Angulo, Instability of cnoidal-peak for the NLS-$\delta$ equation, Math. Nachr., 285 (2012), 1572-1602.  doi: 10.1002/mana.201100209.
    [9] J. Angulo and A. Hernandez, Stability of standing waves for logarithmic Schródinger equation with attractive delta potential, IUMJ, 67 (2018), 471-494.  doi: 10.1512/iumj.2018.67.7273.
    [10] J. Angulo and N. Goloshchapova, On the orbital instability of excited states for the NLS equation with the $\delta$-interaction on a star graph, Discr. Cont. Dyn. Syst.- A, 38 (2018), 5039-5066.  doi: 10.3934/dcds.2018221.
    [11] J. Angulo and N. Goloshchapova, On the standing waves of the NLS-log equation with point interaction on a star graph, preprint, arXiv: 1803.07194.
    [12] J. Angulo and N. Goloshchapova, Extension theory approach in the stability of the standing waves for NLS equation with point interactions on a star graph, Advances in Differential Equations, 23 (2018), 793-846. 
    [13] J. Angulo and N. Goloshchapova, Stability of standing waves for NLS-log equation with $\delta$-interaction, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 27. doi: 10.1007/s00030-017-0451-0.
    [14] J. AnguloO. Lopes and A. Neves, Instability of travelling waves for weakly coupled KdV systems, Nonlinear Anal., 69 (2008), 1870-1887.  doi: 10.1016/j.na.2007.07.039.
    [15] J. Angulo and F. Natali, On the instability of periodic waves for dispersive equations, Differential Integral Equations, 29 (2016), 837-874. 
    [16] J. Angulo and G. Ponce, The nonlinear Schródinger equation with a periodic $\delta$-interaction, Bull. Braz. Math. Soc., New Series, 44 (2013), 497-551.  doi: 10.1007/s00574-013-0024-8.
    [17] G. BoudebsS. CherukulappurathH. LeblondJ. TrolesF. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses, Opt. Commun, 219 (2003), 427-433. 
    [18] V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattices, Modern Physics Letter - B, 18 (2004), 627-651. 
    [19] F. A. Berezin and M. A. Shubin, The Schródinger Equation, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1991. doi: 10.1007/978-94-011-3154-4.
    [20] V. Caudrelier, M. Mintchev and E. Ragoucy, Solving the quantum non-linear Schródinger equation with $\delta$-type impurity, J. Math. Phys., 46 (2005), 042703-1-24. doi: 10.1063/1.1842353.
    [21] T. Cazenave, Semilinear Schródinger Equations, American Mathematical Society, AMS. Lecture Notes, v. 10, 2003. doi: 10.1090/cln/010.
    [22] S. Le CozR. FukuizumiG. FibichB. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schródinger equation with a Dirac Potential, Phys. D, 237 (2008), 1103-1128.  doi: 10.1016/j.physd.2007.12.004.
    [23] K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. PDE., 34 (2009), 1074-1173.  doi: 10.1080/03605300903076831.
    [24] K. B. DavisM. O. MewesM. R. AndrewsN. J. van DrutenD. S. DurfeeD. M. Kurn and W. Ketterle, Bose-Einstein condensation in gas of sodium atoms, Phys. Rev. Lett., 74 (1995), 3969-3973. 
    [25] E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond and V. Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett., 110 (2013), 013901.
    [26] E. L. Falcão-FilhoC. B. de Araújo and J. J. Rodrigues Jr., High-order nonlinearities of aqueous colloids containing silver nanoparticles, J. Opt. Soc. Am. - B, 24 (2007), 2948-2956. 
    [27] R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schródinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst., 21 (2008), 121-136.  doi: 10.3934/dcds.2008.21.121.
    [28] R. FukuizumiM. Ohta and T. Ozawa, Nonlinear Schródinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837-845.  doi: 10.1016/j.anihpc.2007.03.004.
    [29] B. Gaveau and L. S. Schulman, Explicit time-dependent Schródinger propagators, J. Physics A: Math. Gen., 19 (1986), 1833-1846. 
    [30] F. GenoudF. B. Malomed and R. Weishäupl, Stable NLS solitons in a cubic-quintic medium with a delta-function potential, Nonlinear Anal., 133 (2016), 28-50.  doi: 10.1016/j.na.2015.11.016.
    [31] B. V. Gisin, R. Driben and B. A. Malomed, Bistable guided solitons in the cubic-quintic medium, J. Optics B: Quantum and Semiclassical Optics, 6 (2004), S259–S264.
    [32] R. H. GoodmanJ. Holmes and M. Weinstein, Strong NLS soliton-defect interactions, Phys. D, 192 (2004), 215-248.  doi: 10.1016/j.physd.2004.01.021.
    [33] M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, Ⅰ, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.
    [34] M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.
    [35] D. HenryJ. Perez and W. Wreszinski, Stability theory for solitary-wave solutions of scalar field equation, Comm. Math. Phys., 85 (1982), 351-361. 
    [36] J. HolmerJ. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.  doi: 10.1007/s00220-007-0261-z.
    [37] M. Kaminaga and M. Ohta, Stability of standing waves for nonlinear Schrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J.,, 26 (2009), 39-48. 
    [38] T. Kato, Perturbation Theory for Linear Operators, 2$^{nd}$ edition, Springer-Verlang, New York, 1976.,
    [39] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2$^{nd}$ edition, Universitext, Springer, New York, 2015. doi: 10.1007/978-1-4939-2181-2.
    [40] S. Le Coz, Y. Martel and P. Raphael, Minimal mass blow up solutions for a double power nonlinear Schródinger equation, preprint, arXiv: 1406.6002. doi: 10.4171/RMI/899.
    [41] M. Maeda, Stability and instability of standing waves for 1-dimensional nonlinear Schródinger equation with multiple-power nonlinearity, Kodai Math. J., 31 (2008), 263-271.  doi: 10.2996/kmj/1214442798.
    [42] C. R. Menyuk, Soliton robustness in optical fibers, J. Opt. Soc. Am. - B, 10 (1993), 1585-1591
    [43] J. Moloney and A. Newell, Nonlinear Optics, CRC, Taylor & Francis Group, Boca Raton. FL. USA, 2018.,
    [44] M. A. Naimark, Linear Differential Operators, F. Ungar Pub. Co., New York, 1967.,
    [45] M. Ohta, Stability and Instability of standing waves for one dimensional nonlinear Schródinger equations with double power nonlinearity, Kodai Math. J., 18 (1995), 68-74.  doi: 10.2996/kmj/1138043354.
    [46] M. Ohta, Instability of bound states for abstract nonlinear Schródinger equations, J. Funct. Anal., 261 (2011), 90-110.  doi: 10.1016/j.jfa.2011.03.010.
    [47] P. Papagiannis, Y. Kominis and K. Hizanidis, Power-and momentum-dependent soliton dynamics in lattices with longitudinal modulation, Phys. Rev. A, 84 (2011), 013820
    [48] S. Reed and B. Simon, Methods of Modern Mathematical Physics: Analysis of Operators, Academic Press, vol. Ⅳ, 1978.
    [49] H. Sakaguchi and M. Tamura, Scattering and trapping of nonlinear Schródinger solitons in external potentials, J. Phys. Soc. Japan, 73 (2004), 503-506.  doi: 10.1143/JPSJ.73.503.
    [50] B. T. Seaman, L. D. Car and M. J. Holland, Effect of a potential step or impurity on the Bose-Einstein condensate mean field, Phys. Rev. A, 71 (2005), 033609.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(2747) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return