July  2019, 18(4): 2133-2161. doi: 10.3934/cpaa.2019096

Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids

School of Mathematics and CNS, Northwest University, Xi'an 710069, China

* Corresponding author

Received  August 2018 Revised  October 2018 Published  January 2019

Fund Project: This work is supported by the NSFC grant 11331005, 11671319 and 11801444.

In this paper, we study the large time behaviors of boundary layer solution of the inflow problem on the half space for a class of isentropic compressible non-Newtonian fluids. We establish the existence and uniqueness of the boundary layer solution to the non-Newtonian fluids. Especially, it is shown that such a boundary layer solution have a maximal interval of existence. Then we prove that if the strength of the boundary layer solution and the initial perturbation are suitably small, the unique global solution in time to the non-Newtonian fluids exists and asymptotically tends toward the boundary layer solution. The proof is given by the elementary energy method.

Citation: Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096
References:
[1]

M. AnlikerR. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Z. Angew. Math. Phys., 22 (1971), 217-246.   Google Scholar

[2]

G. Böhme, Non-Newtonian Fluid Mechanics, Series in Applied Mathematics and Mechanics North-Holland, Amsterdam, 1987.  Google Scholar

[3]

L. Fang and Z. Guo, A blow-up criterion for a class of non-Newtonian uids with singularity and vacuum, Acta. Math. Appl. Sin., 36 (2013), 502-515.   Google Scholar

[4]

L. Fang and Z. Guo, Analytical solutions to a class of non-Newtonian fluids with free boundaries, J. Math. Phys., 53 (2012), 103701. doi: 10.1063/1.4748523.  Google Scholar

[5]

L. Fang and Z. Guo, Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid, Commun. Pure Appl. Anal., 16 (2017), 209-242.  doi: 10.3934/cpaa.2017010.  Google Scholar

[6]

L. FangH. Zhu and Z. Guo, Global classical solution to a one-dimensional compressible non-Newtonian fluid with large initial data and vacuum, Nonlinear Anal., 174 (2018), 189-208.  doi: 10.1016/j.na.2018.04.025.  Google Scholar

[7]

L. FangX. Kong and J. Liu, Weak solution to a one-dimensional full compressible non-Newtonian fluid, Math. Methods Appl. Sci., 41 (2018), 3441-3462.  doi: 10.1002/mma.4837.  Google Scholar

[8]

E. FeireislX. Liao and J. Málek, Global weak solutions to a class of non-Newtonian compressible fluids, Math. Methods Appl. Sci., 38 (2015), 3482-3494.  doi: 10.1002/mma.3432.  Google Scholar

[9]

B. Guo and P. Zhu, Partial regularity of suitable weak solutions to the system of the incompressible non-Newtonian fluids, J. Differ. Eqs., 178 (2002), 281-297.  doi: 10.1006/jdeq.2000.3958.  Google Scholar

[10]

F. Huang, J. Li and X. Shi, Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space, Comm. Math. Sci., 8 (2010), 639-654.  Google Scholar

[11]

F. HuangA. Matsumura and X. Shi, Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas, Commun. Math. Phys., 239 (2003), 261-285.  doi: 10.1007/s00220-003-0874-9.  Google Scholar

[12]

O. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V. Amer. Math. Soc., Providence, RI, (1970), 95-118. Google Scholar

[13]

J. Málek, J. Nečas, M. Rokyta and M. Ružička, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, New York, 1996. doi: 10.1007/978-1-4899-6824-1.  Google Scholar

[14]

A. Mamontov, Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids, Math. Notes, 68 (2000), 312-325.  doi: 10.1007/BF02674554.  Google Scholar

[15]

A. Matsumura and K. Nishihara, On the stability of the traveling wave solutions of a one- dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[16]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[17]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Commun. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[18]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyper. Differ. Eqs., 8 (2011), 651-670.  doi: 10.1142/S0219891611002524.  Google Scholar

[19]

X. Qin and Y. Wang, Stability of wave patterns to the inflow problem of full compressible Navier-Stokes equations, SIAM J. Math. Anal., 41 (2009), 2057-2087.  doi: 10.1137/09075425X.  Google Scholar

[20]

X. Qin and Y. Wang, Large-time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations, SIAM J. Math. Anal., 43 (2011), 341-366.  doi: 10.1137/100793463.  Google Scholar

[21]

X. ShiT. Wang and Z. Zhang, Asymptotic stability for one-dimensional motion of non-Newtonian compressible fluids, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 99-110.  doi: 10.1007/s10255-014-0273-3.  Google Scholar

[22]

G. Teschl, Ordinary Differential Equations and Dynamical Systems, Providence: American Mathematical Society, 2012. doi: 10.1090/gsm/140.  Google Scholar

[23]

S. Whitaker, Introduction to Fluid Mechanics, Krieger, Melbourne, FL, 1986. Google Scholar

[24]

J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9 (2007), 104-138.  doi: 10.1007/s00021-006-0219-5.  Google Scholar

[25]

H. Yuan and X. Xu, Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum, J. Differ. Eqs., 245 (2008), 2871-2916.  doi: 10.1016/j.jde.2008.04.013.  Google Scholar

[26]

L. YinX. Xu and H. Yuan, Global existence and uniqueness of the initial boundary value problem for a class of non-Newtonian fluids with vacuum, Z. Angew. Math. Phys., 59 (2008), 457-474.  doi: 10.1007/s00033-006-5078-7.  Google Scholar

[27]

V. Zhikov and S. Pastukhova, On the solvability of the Navier-Stokes system for a compressible non-Newtonian fluid, Dokl. Akad. Nauk, 427 (2009), 303-307.  doi: 10.1134/S1064562409040164.  Google Scholar

show all references

References:
[1]

M. AnlikerR. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Z. Angew. Math. Phys., 22 (1971), 217-246.   Google Scholar

[2]

G. Böhme, Non-Newtonian Fluid Mechanics, Series in Applied Mathematics and Mechanics North-Holland, Amsterdam, 1987.  Google Scholar

[3]

L. Fang and Z. Guo, A blow-up criterion for a class of non-Newtonian uids with singularity and vacuum, Acta. Math. Appl. Sin., 36 (2013), 502-515.   Google Scholar

[4]

L. Fang and Z. Guo, Analytical solutions to a class of non-Newtonian fluids with free boundaries, J. Math. Phys., 53 (2012), 103701. doi: 10.1063/1.4748523.  Google Scholar

[5]

L. Fang and Z. Guo, Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid, Commun. Pure Appl. Anal., 16 (2017), 209-242.  doi: 10.3934/cpaa.2017010.  Google Scholar

[6]

L. FangH. Zhu and Z. Guo, Global classical solution to a one-dimensional compressible non-Newtonian fluid with large initial data and vacuum, Nonlinear Anal., 174 (2018), 189-208.  doi: 10.1016/j.na.2018.04.025.  Google Scholar

[7]

L. FangX. Kong and J. Liu, Weak solution to a one-dimensional full compressible non-Newtonian fluid, Math. Methods Appl. Sci., 41 (2018), 3441-3462.  doi: 10.1002/mma.4837.  Google Scholar

[8]

E. FeireislX. Liao and J. Málek, Global weak solutions to a class of non-Newtonian compressible fluids, Math. Methods Appl. Sci., 38 (2015), 3482-3494.  doi: 10.1002/mma.3432.  Google Scholar

[9]

B. Guo and P. Zhu, Partial regularity of suitable weak solutions to the system of the incompressible non-Newtonian fluids, J. Differ. Eqs., 178 (2002), 281-297.  doi: 10.1006/jdeq.2000.3958.  Google Scholar

[10]

F. Huang, J. Li and X. Shi, Asymptotic behavior of solutions to the full compressible Navier-Stokes equations in the half space, Comm. Math. Sci., 8 (2010), 639-654.  Google Scholar

[11]

F. HuangA. Matsumura and X. Shi, Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas, Commun. Math. Phys., 239 (2003), 261-285.  doi: 10.1007/s00220-003-0874-9.  Google Scholar

[12]

O. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V. Amer. Math. Soc., Providence, RI, (1970), 95-118. Google Scholar

[13]

J. Málek, J. Nečas, M. Rokyta and M. Ružička, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, New York, 1996. doi: 10.1007/978-1-4899-6824-1.  Google Scholar

[14]

A. Mamontov, Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids, Math. Notes, 68 (2000), 312-325.  doi: 10.1007/BF02674554.  Google Scholar

[15]

A. Matsumura and K. Nishihara, On the stability of the traveling wave solutions of a one- dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.  doi: 10.1007/BF03167036.  Google Scholar

[16]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[17]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas, Commun. Math. Phys., 222 (2001), 449-474.  doi: 10.1007/s002200100517.  Google Scholar

[18]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas, J. Hyper. Differ. Eqs., 8 (2011), 651-670.  doi: 10.1142/S0219891611002524.  Google Scholar

[19]

X. Qin and Y. Wang, Stability of wave patterns to the inflow problem of full compressible Navier-Stokes equations, SIAM J. Math. Anal., 41 (2009), 2057-2087.  doi: 10.1137/09075425X.  Google Scholar

[20]

X. Qin and Y. Wang, Large-time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations, SIAM J. Math. Anal., 43 (2011), 341-366.  doi: 10.1137/100793463.  Google Scholar

[21]

X. ShiT. Wang and Z. Zhang, Asymptotic stability for one-dimensional motion of non-Newtonian compressible fluids, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 99-110.  doi: 10.1007/s10255-014-0273-3.  Google Scholar

[22]

G. Teschl, Ordinary Differential Equations and Dynamical Systems, Providence: American Mathematical Society, 2012. doi: 10.1090/gsm/140.  Google Scholar

[23]

S. Whitaker, Introduction to Fluid Mechanics, Krieger, Melbourne, FL, 1986. Google Scholar

[24]

J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9 (2007), 104-138.  doi: 10.1007/s00021-006-0219-5.  Google Scholar

[25]

H. Yuan and X. Xu, Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum, J. Differ. Eqs., 245 (2008), 2871-2916.  doi: 10.1016/j.jde.2008.04.013.  Google Scholar

[26]

L. YinX. Xu and H. Yuan, Global existence and uniqueness of the initial boundary value problem for a class of non-Newtonian fluids with vacuum, Z. Angew. Math. Phys., 59 (2008), 457-474.  doi: 10.1007/s00033-006-5078-7.  Google Scholar

[27]

V. Zhikov and S. Pastukhova, On the solvability of the Navier-Stokes system for a compressible non-Newtonian fluid, Dokl. Akad. Nauk, 427 (2009), 303-307.  doi: 10.1134/S1064562409040164.  Google Scholar

[1]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[5]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[6]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[9]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[10]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[11]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[12]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[13]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[16]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[17]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[19]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (124)
  • HTML views (184)
  • Cited by (3)

Other articles
by authors

[Back to Top]