\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Effects of dispersal for a predator-prey model in a heterogeneous environment

The work is supported by the Natural Science Foundation of China (11801431, 61672021), the Postdoctoral Science Foundation of China (2018T111014, 2018M631133), the Natural Science Foundation of Shaanxi Province (2018JQ1004, 2018JQ1017), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0343)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the stationary problem of a predator-prey cross-diffusion system with a protection zone for the prey. We first apply the bifurcation theory to establish the existence of positive stationary solutions. Furthermore, as the cross-diffusion coefficient goes to infinity, the limiting behavior of positive stationary solutions is discussed. These results implies that the large cross-diffusion has beneficial effects on the coexistence of two species. Finally, we analyze the limiting behavior of positive stationary solutions as the intrinsic growth rate of the predator species goes to infinity.

    Mathematics Subject Classification: Primary: 35J55, 92D40; Secondary: 35B30, 35B32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.
    [2] R. H. CuiJ. P. Shi and B. Y. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differential Equations, 256 (2014), 108-129.  doi: 10.1016/j.jde.2013.08.015.
    [3] Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.  doi: 10.1016/j.jde.2006.01.013.
    [4] Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557–4593.
    [5] Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.  doi: 10.1016/j.jde.2007.10.005.
    [6] Y. H. DuR. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.
    [7] X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.  doi: 10.1007/s00285-016-1082-5.
    [8] S. B. LiS. Y. LiuJ. H. Wu and Y. Y. Dong, Positive solutions for Lotka-Volterra competition system with large cross-diffusion in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 36 (2017), 1-19.  doi: 10.1016/j.nonrwa.2016.12.004.
    [9] S. B. Li and J. H. Wu, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone, Discrete Contin. Dynam. Syst., 37 (2017), 411-430.  doi: 10.3934/dcds.2017063.
    [10] S. B. Li, J. H. Wu and S. Y. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, (2017), 56–82. doi: 10.1007/s00526-017-1159-z.
    [11] S. B. Li and Y. Yamada, Effect of cross-diffusion in the diffusion prey-predator model with a protection zone Ⅱ, J. Math. Anal. Appl., 461 (2018), 971-992.  doi: 10.1016/j.jmaa.2017.12.029.
    [12] S. B. Li and J. H. Wu, Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system, J. Differential Equations, 265 (2018), 3754-3791.  doi: 10.1016/j.jde.2018.05.017.
    [13] S. B. LiJ. H. Wu and Y. Y. Dong, Effects of a degeneracy in a diffusive predator-prey model with Holling Ⅱ functional response, Nonlinear Anal. Real World Appl., 43 (2018), 78-95.  doi: 10.1016/j.nonrwa.2018.02.003.
    [14] S. B. LiJ. H. Wu and Y. Y. Dong, Effects of degeneracy and response function in a diffusion predator-prey model, Nonlinearity, 31 (2018), 1461-1483.  doi: 10.1088/1361-6544/aaa2de.
    [15] G. M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400–1406.
    [16] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Research Notes in Mathematics, vol. 426, CRC Press, Boca Raton, FL, 2001.
    [17] K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.  doi: 10.1016/j.jde.2011.01.026.
    [18] K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520. 
    [19] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, J. Funct. Anal., 7 (1971) 487–513.
    [20] Y. X. Wang and W. T. Li, Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.  doi: 10.1016/j.nonrwa.2012.06.001.
    [21] Y. X. Wang and W. T. Li, Uniqueness and global stability of positive stationary solution for a predator-prey system, J. Math. Anal. Appl., 462 (2018), 577-589.  doi: 10.1016/j.jmaa.2018.02.032.
    [22] Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990.
    [23] X. Z. ZengW. T. Zeng and L. Y. Liu, Effect of the protection zone on coexistence of the species for a ratio-dependent predator-prey model, J. Math. Anal. Appl., 462 (2018), 1605-1626.  doi: 10.1016/j.jmaa.2018.02.060.
  • 加载中
SHARE

Article Metrics

HTML views(524) PDF downloads(255) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return