September  2019, 18(5): 2529-2574. doi: 10.3934/cpaa.2019115

Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model

1. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

2. 

Department of Applied Mathematics, College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

* Corresponding author

Received  July 2018 Revised  July 2018 Published  April 2019

Fund Project: The first author is supported by NSF grant 11671075, and the second author is supported by NSF grant 11801133 and the grant from the Key Research Projects of He'nan Higher Education Institutions (18A110038).

In this paper, we establish the global existence, uniqueness and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model in $ H^i\times H^i\times H^i\times H^{i+1}\;(i = 1,2,4) $.

Citation: Yuming Qin, Jianlin Zhang. Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2529-2574. doi: 10.3934/cpaa.2019115
References:
[1]

F. AzevedoE. Sauter and M. Thompson, Classical global solutions for compressible radiation flow in a slab under semi-reflexive boundary conditions, Nonlinear Analysis: Real World Applications, 37 (2017), 493-511.  doi: 10.1016/j.nonrwa.2017.03.007.  Google Scholar

[2]

C. Buet and B. Despres, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectroscopy Radiative Transfer, 85 (2004), 385-418.   Google Scholar

[3]

S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc, New York, 1960.  Google Scholar

[4]

B. Dubroca and J. L. Feugeas, Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif, Comptes Rendus de I'Academie des Sciences, Série I, 329 (1999), 915-920.  doi: 10.1016/S0764-4442(00)87499-6.  Google Scholar

[5]

B. Ducomet and S. Nečasová, Global existence of solutions for the one-dimensional motions of a compressible viscous gas with radiation: An "infrarelativistic model", Nonlinear Analysis TMA, 72 (2010), 3258-3274.  doi: 10.1016/j.na.2009.12.005.  Google Scholar

[6]

B. Ducomet and S. Nečasová, Large-time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation, Annali di Matematica, 191 (2012), 219-260.  doi: 10.1007/s10231-010-0180-z.  Google Scholar

[7]

B. Ducomet and S. Nečasová, Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: the pure scattering case, Analysis and Applications, 11 (2013), 1350003(29 pages). doi: 10.1142/S0219530513500036.  Google Scholar

[8]

F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case, Comm. Math. Physics, 106 (1986), 211-239.   Google Scholar

[9]

Z. GuoH. Li and Z. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Commun. Math. Phys., 309 (2012), 371-412.  doi: 10.1007/s00220-011-1334-6.  Google Scholar

[10]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar

[11]

S. Jiang, Global spherically symmetric solutions of the equations of a viscous polytropic ideal gas in an exterior domain, Commun. Math. Phys., 178 (1996), 339-374.   Google Scholar

[12]

S. Jiang and P. Zhang, Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215 (2001), 559-581.  doi: 10.1007/PL00005543.  Google Scholar

[13]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum, J. Differential Equations, 256 (2014), 3943-3980.  doi: 10.1016/j.jde.2014.03.007.  Google Scholar

[14]

C. Lin, Mathematical Analysis of Radiative Transfer Models, Ph.D Thesis, Université des Sciences et Technologies de Lille, 2007. Google Scholar

[15]

C. LinJ. F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Physics D, 218 (2006), 83-94.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[16]

R. B. LowrieJ. E. Morel and J. A. Hittinger, The coupling of radiation and hydrodynamics, Astrophysical Journal, 521 (1999), 432-450.   Google Scholar

[17] D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, New York, 1984.   Google Scholar
[18] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, New York, 1973.   Google Scholar
[19]

G. C. Pomraning, Radiation Hydrodynamics, Dover Publications, Inc, New York, 2005. Google Scholar

[20]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Volume 184, Advances in Partial Differential Equations, Birkhauser Verlag AG, Basel-Boston-Berlin, 2008.  Google Scholar

[21]

Y. QinB. Feng and M. Zhang, Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation, J. Differential Equations, 252 (2012), 6175-6213.  doi: 10.1016/j.jde.2012.02.022.  Google Scholar

[22]

Y. Qin, B. Feng and M. Zhang, Large-time behavior of solutions for the 1D viscous heat-conducting gas with radiation: the pure scattering case, J. Differential Equations, 256 (2014), 989–1042. doi: 10.1016/j.jde.2013.10.003.  Google Scholar

[23]

Y. Qin and L. Huang, Global well-Posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems, Frontiers in Mathematics, Springer Basel AG, 2012. doi: 10.1007/978-3-0348-0280-2.  Google Scholar

[24]

Y. Qin and J. Zhang, Global existence and asymptotic behavior of cylindrically symmetric solutions for the 3D infrarelativistic model with radiation, J. Math. Fluid Mech., 1 (2018), 35-81.  doi: 10.1007/s00021-016-0312-3.  Google Scholar

[25]

S. F. Shandarin and Y. B. Zel'dovichi, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185.  Google Scholar

[26]

M. Umehara and A. Tani, Global solution to the one-dimensional equations for a selfgravitating viscous radiative and reactive gas, J. Differential Equations, 234 (2007), 439-463. doi: 10.1016/j.jde.2006.09.023.  Google Scholar

[27]

M. Umehara and A. Tani, Temporally global solution to the equations for a spherically symmetric viscous radiative and reactive gas over the rigid core, Anal. Appl., 6 (2008), 183-211.  doi: 10.1142/S0219530508001122.  Google Scholar

[28]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403-442.  doi: 10.1142/S0219891606000847.  Google Scholar

[29]

X. Zhang and S. Jiang, Local existence and finite-time blow-up in multidimensional radiation hydrodynamics, J. Math. Fluid Mech., 9 (2007), 543-564.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

show all references

References:
[1]

F. AzevedoE. Sauter and M. Thompson, Classical global solutions for compressible radiation flow in a slab under semi-reflexive boundary conditions, Nonlinear Analysis: Real World Applications, 37 (2017), 493-511.  doi: 10.1016/j.nonrwa.2017.03.007.  Google Scholar

[2]

C. Buet and B. Despres, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectroscopy Radiative Transfer, 85 (2004), 385-418.   Google Scholar

[3]

S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc, New York, 1960.  Google Scholar

[4]

B. Dubroca and J. L. Feugeas, Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif, Comptes Rendus de I'Academie des Sciences, Série I, 329 (1999), 915-920.  doi: 10.1016/S0764-4442(00)87499-6.  Google Scholar

[5]

B. Ducomet and S. Nečasová, Global existence of solutions for the one-dimensional motions of a compressible viscous gas with radiation: An "infrarelativistic model", Nonlinear Analysis TMA, 72 (2010), 3258-3274.  doi: 10.1016/j.na.2009.12.005.  Google Scholar

[6]

B. Ducomet and S. Nečasová, Large-time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation, Annali di Matematica, 191 (2012), 219-260.  doi: 10.1007/s10231-010-0180-z.  Google Scholar

[7]

B. Ducomet and S. Nečasová, Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: the pure scattering case, Analysis and Applications, 11 (2013), 1350003(29 pages). doi: 10.1142/S0219530513500036.  Google Scholar

[8]

F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case, Comm. Math. Physics, 106 (1986), 211-239.   Google Scholar

[9]

Z. GuoH. Li and Z. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations, Commun. Math. Phys., 309 (2012), 371-412.  doi: 10.1007/s00220-011-1334-6.  Google Scholar

[10]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar

[11]

S. Jiang, Global spherically symmetric solutions of the equations of a viscous polytropic ideal gas in an exterior domain, Commun. Math. Phys., 178 (1996), 339-374.   Google Scholar

[12]

S. Jiang and P. Zhang, Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215 (2001), 559-581.  doi: 10.1007/PL00005543.  Google Scholar

[13]

Y. Li and S. Zhu, Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum, J. Differential Equations, 256 (2014), 3943-3980.  doi: 10.1016/j.jde.2014.03.007.  Google Scholar

[14]

C. Lin, Mathematical Analysis of Radiative Transfer Models, Ph.D Thesis, Université des Sciences et Technologies de Lille, 2007. Google Scholar

[15]

C. LinJ. F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Physics D, 218 (2006), 83-94.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[16]

R. B. LowrieJ. E. Morel and J. A. Hittinger, The coupling of radiation and hydrodynamics, Astrophysical Journal, 521 (1999), 432-450.   Google Scholar

[17] D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, New York, 1984.   Google Scholar
[18] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, New York, 1973.   Google Scholar
[19]

G. C. Pomraning, Radiation Hydrodynamics, Dover Publications, Inc, New York, 2005. Google Scholar

[20]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Volume 184, Advances in Partial Differential Equations, Birkhauser Verlag AG, Basel-Boston-Berlin, 2008.  Google Scholar

[21]

Y. QinB. Feng and M. Zhang, Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation, J. Differential Equations, 252 (2012), 6175-6213.  doi: 10.1016/j.jde.2012.02.022.  Google Scholar

[22]

Y. Qin, B. Feng and M. Zhang, Large-time behavior of solutions for the 1D viscous heat-conducting gas with radiation: the pure scattering case, J. Differential Equations, 256 (2014), 989–1042. doi: 10.1016/j.jde.2013.10.003.  Google Scholar

[23]

Y. Qin and L. Huang, Global well-Posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems, Frontiers in Mathematics, Springer Basel AG, 2012. doi: 10.1007/978-3-0348-0280-2.  Google Scholar

[24]

Y. Qin and J. Zhang, Global existence and asymptotic behavior of cylindrically symmetric solutions for the 3D infrarelativistic model with radiation, J. Math. Fluid Mech., 1 (2018), 35-81.  doi: 10.1007/s00021-016-0312-3.  Google Scholar

[25]

S. F. Shandarin and Y. B. Zel'dovichi, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185.  Google Scholar

[26]

M. Umehara and A. Tani, Global solution to the one-dimensional equations for a selfgravitating viscous radiative and reactive gas, J. Differential Equations, 234 (2007), 439-463. doi: 10.1016/j.jde.2006.09.023.  Google Scholar

[27]

M. Umehara and A. Tani, Temporally global solution to the equations for a spherically symmetric viscous radiative and reactive gas over the rigid core, Anal. Appl., 6 (2008), 183-211.  doi: 10.1142/S0219530508001122.  Google Scholar

[28]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403-442.  doi: 10.1142/S0219891606000847.  Google Scholar

[29]

X. Zhang and S. Jiang, Local existence and finite-time blow-up in multidimensional radiation hydrodynamics, J. Math. Fluid Mech., 9 (2007), 543-564.  doi: 10.1007/s00021-005-0213-3.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[9]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[10]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[11]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (81)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]