\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We obtain generalised trace Hardy inequalities for fractional powers of general operators given by sums of squares of vector fields. Such inequalities are derived by means of particular solutions of an extended equation associated to the above-mentioned operators. As a consequence, Hardy inequalities are also deduced. Particular cases include Laplacians on stratified groups, Euclidean motion groups and special Hermite operators. Fairly explicit expressions for the constants are provided. Moreover, we show several characterisations of the solutions of the extension problems associated to operators with discrete spectrum, namely Laplacians on compact Lie groups, Hermite and special Hermite operators.

    Mathematics Subject Classification: Primary: 35A23; Secondary: 26A33, 26D15, 33C50, 43A80.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Adimurthi, P. K. Ratnakumar and V. K. Sohani, A Hardy-Sobolev inequality for the twisted Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1-23. doi: 10.1017/S0308210516000081.
    [2] Adimurthi and A. Sekar, Role of the fundamental solution in Hardy-Sobolev-type inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 1111-1130. doi: 10.1017/S030821050000490X.
    [3] V. BanicaM. d. M. González and M. Sáez, Some constructions for the fractional Laplacian on noncompact manifolds, Rev. Mat. Iberoam., 31 (2015), 681-712.  doi: 10.4171/RMI/850.
    [4] W. Beckner, Pitt's inequality and the fractional Laplacian: sharp error estimates, Forum Math., 24 (2012), 177-209.  doi: 10.1515/form.2011.056.
    [5] K. BogdanB. Dyda and P. Kim, Hardy inequalities and non-explosion results for semigroups, Potential Anal., 44 (2016), 229-247.  doi: 10.1007/s11118-015-9507-0.
    [6] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics, 2007.
    [7] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [8] P. CiattiM. G. Cowling and F. Ricci, Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math., 277 (2015), 365-387.  doi: 10.1016/j.aim.2014.12.040.
    [9] R. D. DeBlassie, The first exit time of a two-dimensional symmetric stable process from a wedge, Ann. Probab, 18 (1990), 1034-1070. 
    [10] B. DriverL. Gross and L. Saloff-Coste, Holomorphic functions and subelliptic heat kernels over Lie groups, J. Eur. Math. Soc. (JEMS), 11 (2009), 941-978.  doi: 10.4171/JEMS/171.
    [11] F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z., 279 (2015), 435-458.  doi: 10.1007/s00209-014-1376-5.
    [12] S. FilippasL. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional Laplacian, Arch. Ration. Mech. Anal., 208 (2013), 109-161.  doi: 10.1007/s00205-012-0594-4.
    [13] S. FilippasL. Moschini and A. Tertikas, Trace Hardy-Sobolev-Maz'ya inequalities for the half fractional Laplacian, Commun. Pure Appl. Anal., 14 (2015), 373-382.  doi: 10.3934/cpaa.2015.14.373.
    [14] G. B. Folland, Subelliptic estimates and function spaces on Nilpotent Lie groups, Ark. Math., 13 (1975), 161-207.  doi: 10.1007/BF02386204.
    [15] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28. Princeton University Press, N.J.; University of Tokyo Press, Tokyo, 1982.
    [16] R. L. FrankE. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.  doi: 10.1090/S0894-0347-07-00582-6.
    [17] J. E. GaléP. J. Miana and P. R. Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368.  doi: 10.1007/s00028-013-0182-6.
    [18] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble), 40 (1990), 313-356.
    [19] B. C. Hall, The Segal-Bargmann "coherent state" transform for compact Lie groups, J. Funct. Anal., 122 (1994), 103-151.  doi: 10.1006/jfan.1994.1064.
    [20] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, 2nd ed., Graduate Texts in Mathematics, 222, Springer, 2015. doi: 10.1007/978-3-319-13467-3.
    [21] I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Commun. Math. Phys., 53 (1977), 285-294.
    [22] M. Lassalle, L'espace de Hardy d'un domaine de Reinhardt généralisé, J. Funct. Anal., 60 (1985), 309-340.  doi: 10.1016/0022-1236(85)90043-6.
    [23] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.
    [24] N. N. Lebedev, Special Functions and Its Applications, Dover, New York, 1972.
    [25] S. A. Molchanov and E. Ostrovskiĭ, Symmetric stable processes as traces of degenerate diffusion processes, Theor. Probab. Appl., 14 (1969), 128-131.
    [26] V. H. Nguyen, Some trace Hardy type inequalities and trace Hardy-Sobolev-Maz'ya type inequalities, J. Funct. Anal., 270 (2016), 4117-4151.  doi: 10.1016/j.jfa.2016.03.012.
    [27] L. Roncal and S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106-158.  doi: 10.1016/j.aim.2016.07.010.
    [28] L. Roncal and S. Thangavelu, An extension problem and trace Hardy inequality for sublaplacians on H-type groups, Int. Math. Res. Not. IMRN., to appear.
    [29] B. Simon, Representations of Finite and Compact Groups. Graduate Studies in Mathematics, 10. American Mathematical Society, Providence, RI, 1996.
    [30] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32, Princeton University Press, Princeton, NJ, 1971.
    [31] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.
    [32] G. Szegö, Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, R. I., 1975.
    [33] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 42. Princeton University Press, Princeton, NJ, 1993.
    [34] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics 159. Birkhäuser, Boston, MA, 1998. doi: 10.1007/978-1-4612-1772-5.
    [35] S. Thangavelu, An introduction to the uncertainty principle. Hardy's theorem on Lie groups. With a foreword by Gerald B. Folland, Progress in Mathematics 217, Birkhäuser, Boston, MA, 2004. doi: 10.1007/978-0-8176-8164-7.
    [36] S. Thangavelu, Gutzmer's formula and Poisson integrals on the Heisenberg group, Pacific J. Math., 231 (2007), 217-237.  doi: 10.2140/pjm.2007.231.217.
    [37] S. Thangavelu, On the unreasonable effectiveness of Gutzmer's formula. Harmonic analysis and partial differential equations, 199-217, Contemp. Math., 505, Amer. Math. Soc., Providence, RI, 2010. doi: 10.1090/conm/505/09924.
    [38] K. Tzirakis, Improving interpolated Hardy and trace Hardy inequalities on bounded domains, Nonlinear Anal., 127 (2015), 17-34.  doi: 10.1016/j.na.2015.06.019.
    [39] H. Urakawa, The heat equation on compact Lie group, Osaka J. Math., 12 (1975), 285-297.
    [40] D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.  doi: 10.1006/jfan.1999.3462.
  • 加载中
SHARE

Article Metrics

HTML views(1676) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return