# American Institute of Mathematical Sciences

September  2019, 18(5): 2693-2715. doi: 10.3934/cpaa.2019120

## Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents

 1 School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China 2 Department of Mathematics, Tsinghua University, Beijing, 100084, China

* Corresponding author: yguo@math.tsinghua.edu.cn

Received  September 2018 Revised  September 2018 Published  April 2019

Fund Project: The second author is supported by Supported by National Science Foundation of China (11571040, 11771235, 11331010).
The third author is supported by National Science Foundation of China (11571040).

This paper is concerned with the critical quasilinear Schrödinger systems in
 ${\Bbb R}^N:$
 $\left\{\begin{array}{ll}-\Delta w+(\lambda a(x)+1)w-(\Delta|w|^2)w = \frac{p}{p+q}|w|^{p-2}w|z|^q+\frac{\alpha}{\alpha+\beta}|w|^{\alpha-2}w|z|^\beta\\\ -\Delta z+(\lambda b(x)+1)z-(\Delta|z|^2)z = \frac{q}{p+q}|w|^p|z|^{q-2}z+\frac{\beta}{\alpha+\beta}|w|^\alpha|z|^{\beta-2}z, \ \end{array}\right.$
where
 $\lambda>0$
is a parameter,
 $p>2, q>2, \alpha>2, \beta>2,$
 $2\cdot(2^*-1) < p+q<2\cdot2^*$
and
 $\alpha+ \beta = 2\cdot2^*.$
By using variational method, we prove the existence of positive ground state solutions which localize near the set
 $\Omega = int \left\{a^{-1}(0)\right\}\cap int \left\{b^{-1}(0)\right\}$
for
 $\lambda$
large enough.
Citation: Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120
##### References:
 [1] S. Adachi, M. Shibata and T. Watanabe, Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities, Comm. Pure. Appl. Anal., 13 (2014), 97-118.  doi: 10.3934/cpaa.2014.13.97. [2] C. Alves, D. Filho and M. Sonto, On systems of elliptic equations involving subcritical or critical Sobolev eponents, Nonlinear Anal., 42 (2000), 771-787.  doi: 10.1016/S0362-546X(99)00121-2. [3] J. Bezerra do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Diff. Equat., 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030. [4] A. Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191. [5] H. S. Brandi, C. Manus, G. mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids. B., 5 (1993), 3539-3550. [6] X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085. [7] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008. [8] Y. Deng, S. Peng and S. Yan, Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth, J. Diff. Equat., 37 (2017), 4213-4230.  doi: 10.1016/j.jde.2014.09.006. [9] Y. Guo and B. Li, Solutions for qusilinear Schrödinger systems with critical exponents, Z. Angew. Math. Phys., 66 (2015), 517-546.  doi: 10.1007/s00033-014-0416-7. [10] Y. Guo, X. Liu and F. Zhao, Positive solutions for quasilinear systems with critical growth, Advan. Nonl. Studies., 13 (2013), 893-919.  doi: 10.1515/ans-2013-0408. [11] Y. Guo and J. Nie, Infinitely many solutions for quasilinear Schrödinger systems with finite and sign-changing potentials, Z. Angew. Math. Phys., 67 (2016), 1-30.  doi: 10.1007/s00033-016-0621-7. [12] Y. Guo and Z. Tang, Ground state solutions for the quasilinear Schrödinger systems, J. Math. Anal. Appl., 389 (2012), 322-339.  doi: 10.1016/j.jmaa.2011.11.064. [13] X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrö dinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137. [14] Y. He and G. Li, Concentrating solition solutions for quasilinear Schrödinger equations involving critical sobolev exponents, Disc. Cont. Dyna. Syst., 36 (2016), 731-762.  doi: 10.3934/dcds.2016.36.731. [15] L. Jeanjean, T. Lou and Z. Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Diff. Equat., 259 (2015), 3894-3928.  doi: 10.1016/j.jde.2015.05.008. [16] J. Liu, X. Liu and Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Part. Diff. Equat., 39 (2014), 2216-2239.  doi: 10.1080/03605302.2014.942738. [17] J. Liu, X. Liu and Z. Q. Wang, Multibump solutions for quasilinear elliptic equations, Jour. Func. Anal., 262 (2012), 4040-4102.  doi: 10.1016/j.jfa.2012.02.009. [18] J. Liu, X. Liu and Z. Q. Wang, Existence theory for quasilinear elliptic equations via regularization approach, Topo. Meth. Nonlinear Anal., 50 (2017), 469-487.  doi: 10.12775/tmna.2017.008. [19] J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrö dinger equation, Ⅱ, J. Diff. Equat., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5. [20] J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation via Nehari method, Comm. Part. Diff. Equat., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335. [21] X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6. [22] X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equation with critical growth via perturbation method, J. Diff. Equat., 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006. [23] B. Ritchie, Relativistic self-focusing channel formation in laser-plasma interactions, Phys. Rev. E., 50 (1994), 687-689. [24] E. Silva and G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1. [25] Y. Wang and Y. Shen, Existence and asymptotic behavior of positive solutions for a class of quasilinear Schrödinger equations, Advan. Nonl. Studies., 1 (2018), 131-150.  doi: 10.1515/ans-2017-6026. [26] Y. Wang, Y. Zhang and Y. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comp., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091. [27] Y. Wang and W. Zou, Bound states to critical quasilinear Schrödinger equations, Non. Diff. Equat. App., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3. [28] M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. [29] K. Wu, Positive solutons of quasilinear Schrödinger equations critical growth, Appl. Math. Letters., 45 (2015), 52-57.  doi: 10.1016/j.aml.2015.01.005. [30] X. Zeng, Y. Zhang and H. Zhou, Positive solutions for a quasilinear Schrödinger equation involving Hardy potential and critical exponent, Comm. Cont. Math., 16 (2014), 1-32.  doi: 10.1142/S0219199714500345.

show all references

##### References:
 [1] S. Adachi, M. Shibata and T. Watanabe, Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities, Comm. Pure. Appl. Anal., 13 (2014), 97-118.  doi: 10.3934/cpaa.2014.13.97. [2] C. Alves, D. Filho and M. Sonto, On systems of elliptic equations involving subcritical or critical Sobolev eponents, Nonlinear Anal., 42 (2000), 771-787.  doi: 10.1016/S0362-546X(99)00121-2. [3] J. Bezerra do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Diff. Equat., 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030. [4] A. Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191. [5] H. S. Brandi, C. Manus, G. mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids. B., 5 (1993), 3539-3550. [6] X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082-2085. [7] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008. [8] Y. Deng, S. Peng and S. Yan, Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth, J. Diff. Equat., 37 (2017), 4213-4230.  doi: 10.1016/j.jde.2014.09.006. [9] Y. Guo and B. Li, Solutions for qusilinear Schrödinger systems with critical exponents, Z. Angew. Math. Phys., 66 (2015), 517-546.  doi: 10.1007/s00033-014-0416-7. [10] Y. Guo, X. Liu and F. Zhao, Positive solutions for quasilinear systems with critical growth, Advan. Nonl. Studies., 13 (2013), 893-919.  doi: 10.1515/ans-2013-0408. [11] Y. Guo and J. Nie, Infinitely many solutions for quasilinear Schrödinger systems with finite and sign-changing potentials, Z. Angew. Math. Phys., 67 (2016), 1-30.  doi: 10.1007/s00033-016-0621-7. [12] Y. Guo and Z. Tang, Ground state solutions for the quasilinear Schrödinger systems, J. Math. Anal. Appl., 389 (2012), 322-339.  doi: 10.1016/j.jmaa.2011.11.064. [13] X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrö dinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137. [14] Y. He and G. Li, Concentrating solition solutions for quasilinear Schrödinger equations involving critical sobolev exponents, Disc. Cont. Dyna. Syst., 36 (2016), 731-762.  doi: 10.3934/dcds.2016.36.731. [15] L. Jeanjean, T. Lou and Z. Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Diff. Equat., 259 (2015), 3894-3928.  doi: 10.1016/j.jde.2015.05.008. [16] J. Liu, X. Liu and Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Part. Diff. Equat., 39 (2014), 2216-2239.  doi: 10.1080/03605302.2014.942738. [17] J. Liu, X. Liu and Z. Q. Wang, Multibump solutions for quasilinear elliptic equations, Jour. Func. Anal., 262 (2012), 4040-4102.  doi: 10.1016/j.jfa.2012.02.009. [18] J. Liu, X. Liu and Z. Q. Wang, Existence theory for quasilinear elliptic equations via regularization approach, Topo. Meth. Nonlinear Anal., 50 (2017), 469-487.  doi: 10.12775/tmna.2017.008. [19] J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrö dinger equation, Ⅱ, J. Diff. Equat., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5. [20] J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation via Nehari method, Comm. Part. Diff. Equat., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335. [21] X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6. [22] X. Liu, J. Liu and Z. Q. Wang, Quasilinear elliptic equation with critical growth via perturbation method, J. Diff. Equat., 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006. [23] B. Ritchie, Relativistic self-focusing channel formation in laser-plasma interactions, Phys. Rev. E., 50 (1994), 687-689. [24] E. Silva and G. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var., 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1. [25] Y. Wang and Y. Shen, Existence and asymptotic behavior of positive solutions for a class of quasilinear Schrödinger equations, Advan. Nonl. Studies., 1 (2018), 131-150.  doi: 10.1515/ans-2017-6026. [26] Y. Wang, Y. Zhang and Y. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comp., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091. [27] Y. Wang and W. Zou, Bound states to critical quasilinear Schrödinger equations, Non. Diff. Equat. App., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3. [28] M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1. [29] K. Wu, Positive solutons of quasilinear Schrödinger equations critical growth, Appl. Math. Letters., 45 (2015), 52-57.  doi: 10.1016/j.aml.2015.01.005. [30] X. Zeng, Y. Zhang and H. Zhou, Positive solutions for a quasilinear Schrödinger equation involving Hardy potential and critical exponent, Comm. Cont. Math., 16 (2014), 1-32.  doi: 10.1142/S0219199714500345.
 [1] Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099 [2] Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 [3] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [4] Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281 [5] GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803 [6] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 [7] Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 [8] Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038 [9] Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039 [10] Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004 [11] Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99 [12] Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 [13] Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004 [14] Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234 [15] Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214 [16] Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108 [17] Abbas Moameni. Soliton solutions for quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$. Communications on Pure and Applied Analysis, 2008, 7 (1) : 89-105. doi: 10.3934/cpaa.2008.7.89 [18] Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 [19] Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165 [20] Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

2020 Impact Factor: 1.916