• Previous Article
    Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents
September  2019, 18(5): 2717-2733. doi: 10.3934/cpaa.2019121

Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

* Corresponding author

Received  October 2018 Revised  January 2019 Published  April 2019

Fund Project: The author was partly supported by grant from the NNSF of China (No.11371056)

We present the singular Hardy-Trudinger-Moser inequality and the existence of their extremal functions on the unit disc
$ B $
in
$ \mathbb{R}^2 $
. As our first main result, we show that for any
$ 0<t<2 $
and
$ u \in C_0^\infty({B}) $
satisfying
$ \int_{{B}}|\nabla u|^2 dx- \int_{{B}}\frac{u^2}{(1-|x|^2)^2}dx\leq1, $
there exists a constant
$ C_{0}>0 $
such that the following inequality holds
$ \int_{{B}}\frac{e^{4\pi(1-t/2)u^2}}{|x|^t} dx\leq C_{0}. $
Furthermore, by the method of blow-up analysis, we establish the existence of extremal functions in a suitable function space. Our results extend those in Wang and Ye [36] from the non-singular case
$ t = 0 $
to the singular case for
$ 0<t<2 $
.
Citation: Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121
References:
[1]

D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128 (1988), 385-398. doi: 10.2307/1971445. Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nolinear Differential Equations Application, 13 (2007), 585-603.Google Scholar

[3]

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $\mathbb{R}^N$ and its applications, Int. Math. Res. Not., 13 (2010), 2394-2426. Google Scholar

[4]

L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar

[5]

L. ChenJ. LiG. Lu and C. Zhang, Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in $R^4$, Adv. Nonlinear Stud., 18 (2018), 429-452. doi: 10.1515/ans-2018-2020. Google Scholar

[6]

M. DongN. Lam and G. Lu, Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal., 173 (2018), 75-98. doi: 10.1016/j.na.2018.03.006. Google Scholar

[7]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7. Google Scholar

[8]

Y. Dong and Q. Yang, An interpolation of Hardy inequality and Moser-Trudinger inequality on Riemannian manifolds with negative curvature, Acta. Mathematica Sinica., English Series, 32 (2016), 856-866. doi: 10.1007/s10114-016-5129-8. Google Scholar

[9]

M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497. doi: 10.1007/BF02566514. Google Scholar

[10]

N. Lam, Equivalence of sharp Trudinger-Moser-Adams inequalities, Commun. Pure Appl. Anal., 16 (2017), 973-997. doi: 10.3934/cpaa.2017047. Google Scholar

[11]

N. Lam and G. Lu, Sharp constants and optimizers for a class of Caffarelli-Kohn-Nirenberg inequalities, Adv. Nonlinear Stud., 17 (2017), 457-480. doi: 10.1515/ans-2017-0012. Google Scholar

[12]

N. Lam and G. Lu, Sharp singular Trudinger-Moser-Adams type inequalities with exact growth, Geometric methods in PDE's, 43–80, Springer INdAM Ser., 13, Springer, Cham, 2015. Google Scholar

[13]

N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differential Equations, 255 (2013), 298-325. doi: 10.1016/j.jde.2013.04.005. Google Scholar

[14]

N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231 (2012), 3259-3287. doi: 10.1016/j.aim.2012.09.004. Google Scholar

[15]

J. LiG. Lu and Q. Yang, Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension, Adv. Math., 33 (2018), 350-385. doi: 10.1016/j.aim.2018.05.035. Google Scholar

[16]

J. LiG. Lu and M. Zhu, Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations, (2018), 57-84. doi: 10.1007/s00526-018-1352-8. Google Scholar

[17]

Y. Li, Trudinger-Moser inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations, 14 (2001), 163-192. Google Scholar

[18]

Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A., 48 (2005), 618-648. doi: 10.1360/04ys0050. Google Scholar

[19]

Y. Li, Remarks on the extremal functions for the Moser-Trudinger inequality, Acta Math. Sin. (Engl. Ser.), 22 (2006), 545-550. doi: 10.1007/s10114-005-0568-7. Google Scholar

[20]

Y. Li and C. Ndiaye, Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds, J. Geom. Anal., 17 (2007), 669-699. doi: 10.1007/BF02937433. Google Scholar

[21]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^n$, Indiana Univ. Math. J., 57 (2008), 451-480. doi: 10.1512/iumj.2008.57.3137. Google Scholar

[22]

K. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671. doi: 10.1090/S0002-9947-96-01541-3. Google Scholar

[23]

G. Lu and H. Tang, Best constants for Moser-Trudinger inequalities on high dimensional hyperbolic spaces, Adv. Nonlinear Stud., 13 (2013), 1035-1052. doi: 10.1515/ans-2013-0415. Google Scholar

[24]

G. Lu and H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition, J. Geom. Anal., 26 (2016), 837-857. doi: 10.1007/s12220-015-9573-y. Google Scholar

[25]

G. Lu and Q. Yang, A sharp Trudinger-Moser inequality on any bounded and convex plannar domain, Calc. Var. Partial Differential Equations, 55 (2016). doi: 10.1007/s00526-016-1077-5. Google Scholar

[26]

G. Lu and Q. Yang, Sharp Hardy-Adams inequalities for bi-laplacian on hyperbolic space of dimension four, Advances in Mathematics, 319 (2017), 567-598. doi: 10.1016/j.aim.2017.08.014. Google Scholar

[27]

G. Lu and Q. Yang, Paneitz operators on hyperbolic spaces and higher order Hardy-Sobolev-Maz'ya inequalities on half spaces, Amer. J. Math., to appear.Google Scholar

[28]

G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170. doi: 10.1016/j.aim.2008.10.011. Google Scholar

[29]

G. Lu and Y. Yang, Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension, Discrete Contin. Dyn. Syst., 25 (2009), 963-979. doi: 10.3934/dcds.2009.25.963. Google Scholar

[30]

G. Lu and M. Zhu, A sharp Trudinger-Moser type inequality involving $L ^n$ norm in the entire space $\mathbb{R}^n$.Google Scholar

[31]

G. Mancini and K. Sandeep, Moser-Trudinger inequality on conformal discs, Commum. Contemp. Math., 12 (2010), 1055-1068. doi: 10.1142/S0219199710004111. Google Scholar

[32]

G. ManciniK. Sandeep and K. Tintarev, Trudinger-Moser inequality in the hyperbolic spaces $\mathbb{H}^N$, Adv. Nonlinear Anal., 2 (2013), 309-324. doi: 10.1515/anona-2013-0001. Google Scholar

[33]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[34]

S. I. Pohozaev, The Sobolev embedding in the case pl = n, Proceeding of the Technical Scientific Conference on Advances of Scientific Research, 1964–1965. Mathematics Section, Moskov. Energet. Inst., (1965), 158–170.Google Scholar

[35]

N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. doi: 10.1512/iumj.1968.17.17028. Google Scholar

[36]

G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Adv. Math., 230 (2012), 294-320. doi: 10.1016/j.aim.2011.12.001. Google Scholar

[37]

Q. YangD. Su and Y. Kong, Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature, Annali di Matematica Pura ed Applicata, 195 (2016), 459-471. doi: 10.1007/s10231-015-0472-4. Google Scholar

[38]

V. I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math. Docl., 2 (1961), 746-749. Google Scholar

[39]

C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in $R^n$ and n-Laplace equations, Adv. Nonlinear Stud., 18 (2018), 567-585. doi: 10.1515/ans-2017-6041. Google Scholar

show all references

References:
[1]

D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128 (1988), 385-398. doi: 10.2307/1971445. Google Scholar

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nolinear Differential Equations Application, 13 (2007), 585-603.Google Scholar

[3]

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $\mathbb{R}^N$ and its applications, Int. Math. Res. Not., 13 (2010), 2394-2426. Google Scholar

[4]

L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar

[5]

L. ChenJ. LiG. Lu and C. Zhang, Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in $R^4$, Adv. Nonlinear Stud., 18 (2018), 429-452. doi: 10.1515/ans-2018-2020. Google Scholar

[6]

M. DongN. Lam and G. Lu, Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal., 173 (2018), 75-98. doi: 10.1016/j.na.2018.03.006. Google Scholar

[7]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7. Google Scholar

[8]

Y. Dong and Q. Yang, An interpolation of Hardy inequality and Moser-Trudinger inequality on Riemannian manifolds with negative curvature, Acta. Mathematica Sinica., English Series, 32 (2016), 856-866. doi: 10.1007/s10114-016-5129-8. Google Scholar

[9]

M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497. doi: 10.1007/BF02566514. Google Scholar

[10]

N. Lam, Equivalence of sharp Trudinger-Moser-Adams inequalities, Commun. Pure Appl. Anal., 16 (2017), 973-997. doi: 10.3934/cpaa.2017047. Google Scholar

[11]

N. Lam and G. Lu, Sharp constants and optimizers for a class of Caffarelli-Kohn-Nirenberg inequalities, Adv. Nonlinear Stud., 17 (2017), 457-480. doi: 10.1515/ans-2017-0012. Google Scholar

[12]

N. Lam and G. Lu, Sharp singular Trudinger-Moser-Adams type inequalities with exact growth, Geometric methods in PDE's, 43–80, Springer INdAM Ser., 13, Springer, Cham, 2015. Google Scholar

[13]

N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differential Equations, 255 (2013), 298-325. doi: 10.1016/j.jde.2013.04.005. Google Scholar

[14]

N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231 (2012), 3259-3287. doi: 10.1016/j.aim.2012.09.004. Google Scholar

[15]

J. LiG. Lu and Q. Yang, Fourier analysis and optimal Hardy-Adams inequalities on hyperbolic spaces of any even dimension, Adv. Math., 33 (2018), 350-385. doi: 10.1016/j.aim.2018.05.035. Google Scholar

[16]

J. LiG. Lu and M. Zhu, Concentration-compactness principle for Trudinger-Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations, (2018), 57-84. doi: 10.1007/s00526-018-1352-8. Google Scholar

[17]

Y. Li, Trudinger-Moser inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations, 14 (2001), 163-192. Google Scholar

[18]

Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A., 48 (2005), 618-648. doi: 10.1360/04ys0050. Google Scholar

[19]

Y. Li, Remarks on the extremal functions for the Moser-Trudinger inequality, Acta Math. Sin. (Engl. Ser.), 22 (2006), 545-550. doi: 10.1007/s10114-005-0568-7. Google Scholar

[20]

Y. Li and C. Ndiaye, Extremal functions for Moser-Trudinger type inequality on compact closed 4-manifolds, J. Geom. Anal., 17 (2007), 669-699. doi: 10.1007/BF02937433. Google Scholar

[21]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $R^n$, Indiana Univ. Math. J., 57 (2008), 451-480. doi: 10.1512/iumj.2008.57.3137. Google Scholar

[22]

K. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671. doi: 10.1090/S0002-9947-96-01541-3. Google Scholar

[23]

G. Lu and H. Tang, Best constants for Moser-Trudinger inequalities on high dimensional hyperbolic spaces, Adv. Nonlinear Stud., 13 (2013), 1035-1052. doi: 10.1515/ans-2013-0415. Google Scholar

[24]

G. Lu and H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition, J. Geom. Anal., 26 (2016), 837-857. doi: 10.1007/s12220-015-9573-y. Google Scholar

[25]

G. Lu and Q. Yang, A sharp Trudinger-Moser inequality on any bounded and convex plannar domain, Calc. Var. Partial Differential Equations, 55 (2016). doi: 10.1007/s00526-016-1077-5. Google Scholar

[26]

G. Lu and Q. Yang, Sharp Hardy-Adams inequalities for bi-laplacian on hyperbolic space of dimension four, Advances in Mathematics, 319 (2017), 567-598. doi: 10.1016/j.aim.2017.08.014. Google Scholar

[27]

G. Lu and Q. Yang, Paneitz operators on hyperbolic spaces and higher order Hardy-Sobolev-Maz'ya inequalities on half spaces, Amer. J. Math., to appear.Google Scholar

[28]

G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170. doi: 10.1016/j.aim.2008.10.011. Google Scholar

[29]

G. Lu and Y. Yang, Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension, Discrete Contin. Dyn. Syst., 25 (2009), 963-979. doi: 10.3934/dcds.2009.25.963. Google Scholar

[30]

G. Lu and M. Zhu, A sharp Trudinger-Moser type inequality involving $L ^n$ norm in the entire space $\mathbb{R}^n$.Google Scholar

[31]

G. Mancini and K. Sandeep, Moser-Trudinger inequality on conformal discs, Commum. Contemp. Math., 12 (2010), 1055-1068. doi: 10.1142/S0219199710004111. Google Scholar

[32]

G. ManciniK. Sandeep and K. Tintarev, Trudinger-Moser inequality in the hyperbolic spaces $\mathbb{H}^N$, Adv. Nonlinear Anal., 2 (2013), 309-324. doi: 10.1515/anona-2013-0001. Google Scholar

[33]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[34]

S. I. Pohozaev, The Sobolev embedding in the case pl = n, Proceeding of the Technical Scientific Conference on Advances of Scientific Research, 1964–1965. Mathematics Section, Moskov. Energet. Inst., (1965), 158–170.Google Scholar

[35]

N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484. doi: 10.1512/iumj.1968.17.17028. Google Scholar

[36]

G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Adv. Math., 230 (2012), 294-320. doi: 10.1016/j.aim.2011.12.001. Google Scholar

[37]

Q. YangD. Su and Y. Kong, Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature, Annali di Matematica Pura ed Applicata, 195 (2016), 459-471. doi: 10.1007/s10231-015-0472-4. Google Scholar

[38]

V. I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math. Docl., 2 (1961), 746-749. Google Scholar

[39]

C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in $R^n$ and n-Laplace equations, Adv. Nonlinear Stud., 18 (2018), 567-585. doi: 10.1515/ans-2017-6041. Google Scholar

[1]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[2]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[3]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[4]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[5]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[6]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[7]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[8]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[9]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[10]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[11]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[12]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[13]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[14]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[15]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[16]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[17]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[18]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[19]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[20]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (52)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]