• Previous Article
    Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing
  • CPAA Home
  • This Issue
  • Next Article
    Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity
September  2019, 18(5): 2757-2764. doi: 10.3934/cpaa.2019123

Higher order conformally invariant equations in $ {\mathbb R}^3 $ with prescribed volume

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T1Z2, Canada

Received  October 2018 Revised  January 2019 Published  April 2019

Fund Project: The first author is supported by SNSF Grant No. P2BSP2-172064. The second author is partially supported by NSERC

In this paper we study the following conformally invariant poly-harmonic equation
$ \Delta^mu = -u^\frac{3+2m}{3-2m}\quad\text{in }\mathbb{R}^3,\quad u>0, $
with
$ m = 2,3 $
. We prove the existence of positive smooth radial solutions with prescribed volume
$ \int_{\mathbb{R}^3} u^\frac{6}{3-2m}dx $
. We show that the set of all possible values of the volume is a bounded interval
$ (0,\Lambda^*] $
for
$ m = 2 $
, and it is
$ (0,\infty) $
for
$ m = 3 $
. This is in sharp contrast to
$ m = 1 $
case in which the volume
$ \int_{\mathbb{R}^3} u^\frac{6}{3-2m}dx $
is a fixed value.
Citation: Ali Hyder, Juncheng Wei. Higher order conformally invariant equations in $ {\mathbb R}^3 $ with prescribed volume. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2757-2764. doi: 10.3934/cpaa.2019123
References:
[1]

T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987), 199-291. doi: 10.1016/0022-1236(87)90025-5. Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304. Google Scholar

[3]

S-Y. A. Chang and W. Chen, A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems, 7 (2001), 275-281. doi: 10.3934/dcds.2001.7.275. Google Scholar

[4]

Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Diff. Equations, 246 (2009), 216-234. doi: 10.1016/j.jde.2008.06.027. Google Scholar

[5]

T. V. Duoc and Q. A. Ngô, A note on positive radial solutions of $\Delta^2 u+u^{-q} = 0$ in $ \mathbb{R}^3$ with exactly quadratic growth at infinity, Diff. Int. Equations, 30 (2017), 917-928. Google Scholar

[6]

T. V. Duoc and Q. A. Ngô, Exact growth at infinity for radial solutions of $\Delta^3u+u^{-q} = 0$ in $\mathbb{ \mathbb{R}}^3$, Preprint (2017), ftp://file.viasm.org/Web/TienAnPham-17/Preprint_1702.pdf.Google Scholar

[7]

A. Farina and A. Ferrero, Existence and stability properties of entire solutions to the polyharmonic equation $(-\Delta u)^m = e^u$ for any $m>1$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 495-528. doi: 10.1016/j.anihpc.2014.11.005. Google Scholar

[8]

X. Feng and X. Xu, Entire solutions of an integral equation in $ \mathbb{R}^5$, ISRN Math. Anal., (2013), Art. ID 384394, 17 pp. Google Scholar

[9]

I. Guerra, A note on nonlinear biharmonic equations with negative exponents, J. Differential Equations, 253 (2012), 3147-3157. doi: 10.1016/j.jde.2012.08.037. Google Scholar

[10]

X. Hunag and D. Ye, Conformal metrics in $\mathbb{R}^{2m}$ with constant $Q$-curvature and arbitrary volume, Calc. Var. Partial Differential Equations, 54 (2015), 3373-3384. doi: 10.1007/s00526-015-0907-1. Google Scholar

[11]

A. Hyder, Conformally Euclidean metrics on $ \mathbb{R}^n$ with arbitrary total Q-curvature, Anal. PDE, 10 (2017), 635-652. doi: 10.2140/apde.2017.10.635. Google Scholar

[12]

A. Hyder and J. Wei, Non-radial solutions to a biharmonic equation with negative exponent, Preprint (2018), http://www.math.ubc.ca/~ali.hyder/W/HW.pdf.Google Scholar

[13]

B. Lai, A new proof of I. Guerra's results concerning nonlinear biharmonic equations with negative exponents, J. Math. Anal. Appl., 418 (2014), 469-475. doi: 10.1016/j.jmaa.2014.04.005. Google Scholar

[14]

Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. Google Scholar

[15]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052. Google Scholar

[16]

L. Martinazzi, Conformal metrics on $ \mathbb{R}^{2m}$ with constant Q-curvature and large volume, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 969-982. doi: 10.1016/j.anihpc.2012.12.007. Google Scholar

[17]

P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations, 37 (2003), 1-13. Google Scholar

[18]

Q. A. Ngô, Classification of entire solutions of $(-\Delta)^n u+u^{4n-1}=0$ with exact linear growth at infinity in $\mathbb{R}^{2n-1}$, Proc. Amer. Math. Soc., 146 (2018), 2585-2600. doi: 10.1090/proc/13960. Google Scholar

[19]

J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $ \mathbb{R}^4$, Calc. Var. Partial Differential Equations, 32 (2008), 373-386. doi: 10.1007/s00526-007-0145-2. Google Scholar

[20]

X. Xu, Exact solutions of nonlinear conformally invariant integral equations in $\mathbb{R}^3$, Adv. Math., 194 (2005), 485-503. doi: 10.1016/j.aim.2004.07.004. Google Scholar

[21]

X. Xu and P. Yang, On a fourth order equation in $3$-$D$, ESAIM: Control Optim. Calc. Var., 8 (2002), 1029-1042. doi: 10.1051/cocv:2002023. Google Scholar

[22]

P. Yang and M. Zhu, On the Paneitz energy on standard three sphere, ESAIM: Control Optim. Calc. Var., 10 (2004), 211-223. doi: 10.1051/cocv:2004002. Google Scholar

show all references

References:
[1]

T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987), 199-291. doi: 10.1016/0022-1236(87)90025-5. Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297. doi: 10.1002/cpa.3160420304. Google Scholar

[3]

S-Y. A. Chang and W. Chen, A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems, 7 (2001), 275-281. doi: 10.3934/dcds.2001.7.275. Google Scholar

[4]

Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Diff. Equations, 246 (2009), 216-234. doi: 10.1016/j.jde.2008.06.027. Google Scholar

[5]

T. V. Duoc and Q. A. Ngô, A note on positive radial solutions of $\Delta^2 u+u^{-q} = 0$ in $ \mathbb{R}^3$ with exactly quadratic growth at infinity, Diff. Int. Equations, 30 (2017), 917-928. Google Scholar

[6]

T. V. Duoc and Q. A. Ngô, Exact growth at infinity for radial solutions of $\Delta^3u+u^{-q} = 0$ in $\mathbb{ \mathbb{R}}^3$, Preprint (2017), ftp://file.viasm.org/Web/TienAnPham-17/Preprint_1702.pdf.Google Scholar

[7]

A. Farina and A. Ferrero, Existence and stability properties of entire solutions to the polyharmonic equation $(-\Delta u)^m = e^u$ for any $m>1$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 495-528. doi: 10.1016/j.anihpc.2014.11.005. Google Scholar

[8]

X. Feng and X. Xu, Entire solutions of an integral equation in $ \mathbb{R}^5$, ISRN Math. Anal., (2013), Art. ID 384394, 17 pp. Google Scholar

[9]

I. Guerra, A note on nonlinear biharmonic equations with negative exponents, J. Differential Equations, 253 (2012), 3147-3157. doi: 10.1016/j.jde.2012.08.037. Google Scholar

[10]

X. Hunag and D. Ye, Conformal metrics in $\mathbb{R}^{2m}$ with constant $Q$-curvature and arbitrary volume, Calc. Var. Partial Differential Equations, 54 (2015), 3373-3384. doi: 10.1007/s00526-015-0907-1. Google Scholar

[11]

A. Hyder, Conformally Euclidean metrics on $ \mathbb{R}^n$ with arbitrary total Q-curvature, Anal. PDE, 10 (2017), 635-652. doi: 10.2140/apde.2017.10.635. Google Scholar

[12]

A. Hyder and J. Wei, Non-radial solutions to a biharmonic equation with negative exponent, Preprint (2018), http://www.math.ubc.ca/~ali.hyder/W/HW.pdf.Google Scholar

[13]

B. Lai, A new proof of I. Guerra's results concerning nonlinear biharmonic equations with negative exponents, J. Math. Anal. Appl., 418 (2014), 469-475. doi: 10.1016/j.jmaa.2014.04.005. Google Scholar

[14]

Y. Li, Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. Google Scholar

[15]

C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231. doi: 10.1007/s000140050052. Google Scholar

[16]

L. Martinazzi, Conformal metrics on $ \mathbb{R}^{2m}$ with constant Q-curvature and large volume, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 969-982. doi: 10.1016/j.anihpc.2012.12.007. Google Scholar

[17]

P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations, 37 (2003), 1-13. Google Scholar

[18]

Q. A. Ngô, Classification of entire solutions of $(-\Delta)^n u+u^{4n-1}=0$ with exact linear growth at infinity in $\mathbb{R}^{2n-1}$, Proc. Amer. Math. Soc., 146 (2018), 2585-2600. doi: 10.1090/proc/13960. Google Scholar

[19]

J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $ \mathbb{R}^4$, Calc. Var. Partial Differential Equations, 32 (2008), 373-386. doi: 10.1007/s00526-007-0145-2. Google Scholar

[20]

X. Xu, Exact solutions of nonlinear conformally invariant integral equations in $\mathbb{R}^3$, Adv. Math., 194 (2005), 485-503. doi: 10.1016/j.aim.2004.07.004. Google Scholar

[21]

X. Xu and P. Yang, On a fourth order equation in $3$-$D$, ESAIM: Control Optim. Calc. Var., 8 (2002), 1029-1042. doi: 10.1051/cocv:2002023. Google Scholar

[22]

P. Yang and M. Zhu, On the Paneitz energy on standard three sphere, ESAIM: Control Optim. Calc. Var., 10 (2004), 211-223. doi: 10.1051/cocv:2004002. Google Scholar

[1]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

[2]

Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132

[3]

Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074

[4]

Chungen Liu, Yafang Wang. Existence results for the fractional Q-curvature problem on three dimensional CR sphere. Communications on Pure & Applied Analysis, 2018, 17 (3) : 849-885. doi: 10.3934/cpaa.2018043

[5]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[6]

Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Large solutions of elliptic systems of second order and applications to the biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 411-432. doi: 10.3934/dcds.2012.32.411

[7]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[8]

David L. Finn. Noncompact manifolds with constant negative scalar curvature and singular solutions to semihnear elliptic equations. Conference Publications, 1998, 1998 (Special) : 262-275. doi: 10.3934/proc.1998.1998.262

[9]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[10]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[11]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[12]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[13]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[14]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[15]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[16]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[17]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[18]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[19]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[20]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (28)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]