-
Previous Article
Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities
- CPAA Home
- This Issue
-
Next Article
Higher order conformally invariant equations in $ {\mathbb R}^3 $ with prescribed volume
Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing
1. | School of Mathematical Sciences, Monash University, VIC 3800, Australia |
2. | School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia |
3. | Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China |
A time-fractional Fokker–Planck initial-boundary value problem is considered, with differential operator $ u_t-\nabla\cdot(\partial_t^{1-\alpha}\kappa_\alpha\nabla u -{\bf{F}}\partial_t^{1-\alpha}u) $, where $ 0<\alpha <1 $. The forcing function $ {\bf{F}} = {\bf{F}}(t,x) $, which is more difficult to analyse than the case $ {\bf{F}} = {\bf{F}}(x) $ investigated previously by other authors. The spatial domain $ \Omega \subset\mathbb{R}^d $, where $ d\ge 1 $, has a smooth boundary. Existence, uniqueness and regularity of a mild solution $ u $ is proved under the hypothesis that the initial data $ u_0 $ lies in $ L^2(\Omega) $. For $ 1/2<\alpha<1 $ and $ u_0\in H^2(\Omega)\cap H_0^1(\Omega) $, it is shown that $ u $ becomes a classical solution of the problem. Estimates of time derivatives of the classical solution are derived—these are known to be needed in numerical analyses of this problem.
References:
[1] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183, Springer-Verlag, New York, 2013.
doi: 10.1007/978-1-4614-5975-0. |
[2] |
K. Diethelm, The Analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010
doi: 10.1007/978-3-642-14574-2. |
[3] |
S. D. Eidelman and A. N. Kochubei,
Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.
doi: 10.1016/j.jde.2003.12.002. |
[4] |
L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[5] |
C. Huang, K. N. Le and M. Stynes, A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing, IMA J. Numer. Anal. (to appear). |
[6] |
K. N. Le, W. McLean and K. Mustapha,
Numerical solution of the time-fractional Fokker-Planck equation with general forcing, SIAM J. Numer. Anal., 54 (2016), 1763-1784.
doi: 10.1137/15M1031734. |
[7] |
Y. Luchko,
Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 351 (2009), 218-223.
doi: 10.1016/j.jmaa.2008.10.018. |
[8] |
Y. Luchko,
Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Computers & Mathematics with Applications, 59 (2010), 1766-1772.
doi: 10.1016/j.camwa.2009.08.015. |
[9] |
W. McLean,
Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), 123-138.
doi: 10.1017/S1446181111000617. |
[10] |
W. McLean,
Fast summation by interval clustering for an evolution equation with memory, SIAM J. Sci. Comput., 34 (2012), A3039-A3056.
doi: 10.1137/120870505. |
[11] |
W. McLean, K. Mustapha, R. Ali and O. Knio, Well-posedness of time-fractional advection-diffusion-reaction equations, arXiv e-prints. |
[12] |
W. McLean, K. Mustapha, R. Ali and O. Knio, Regularity theory for time-fractional, advection-diffusion-reaction equations, arXiv e-prints. |
[13] |
J. Mu, B. Ahmad and S. Huang,
Existence and regularity of solutions to time-fractional diffusion equations, Computers & Mathematics with Applications, 73 (2017), 985-996.
doi: 10.1016/j.camwa.2016.04.039. |
[14] |
K. Mustapha and D. Schötzau,
Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations, IMA Journal of Numerical Analysis, 34 (2014), 1426-1446.
doi: 10.1093/imanum/drt048. |
[15] |
L. Pinto and E. Sousa,
Numerical solution of a time-space fractional Fokker Planck equation with variable force field and diffusion, Commun. Nonlinear Sci. Numer. Simul., 50 (2017), 211-228.
doi: 10.1016/j.cnsns.2017.03.004. |
[16] |
R.-N. Wang, D.-H. Chen and T.-J. Xiao,
Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235.
doi: 10.1016/j.jde.2011.08.048. |
[17] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
show all references
References:
[1] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183, Springer-Verlag, New York, 2013.
doi: 10.1007/978-1-4614-5975-0. |
[2] |
K. Diethelm, The Analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010
doi: 10.1007/978-3-642-14574-2. |
[3] |
S. D. Eidelman and A. N. Kochubei,
Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.
doi: 10.1016/j.jde.2003.12.002. |
[4] |
L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[5] |
C. Huang, K. N. Le and M. Stynes, A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing, IMA J. Numer. Anal. (to appear). |
[6] |
K. N. Le, W. McLean and K. Mustapha,
Numerical solution of the time-fractional Fokker-Planck equation with general forcing, SIAM J. Numer. Anal., 54 (2016), 1763-1784.
doi: 10.1137/15M1031734. |
[7] |
Y. Luchko,
Maximum principle for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 351 (2009), 218-223.
doi: 10.1016/j.jmaa.2008.10.018. |
[8] |
Y. Luchko,
Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Computers & Mathematics with Applications, 59 (2010), 1766-1772.
doi: 10.1016/j.camwa.2009.08.015. |
[9] |
W. McLean,
Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), 123-138.
doi: 10.1017/S1446181111000617. |
[10] |
W. McLean,
Fast summation by interval clustering for an evolution equation with memory, SIAM J. Sci. Comput., 34 (2012), A3039-A3056.
doi: 10.1137/120870505. |
[11] |
W. McLean, K. Mustapha, R. Ali and O. Knio, Well-posedness of time-fractional advection-diffusion-reaction equations, arXiv e-prints. |
[12] |
W. McLean, K. Mustapha, R. Ali and O. Knio, Regularity theory for time-fractional, advection-diffusion-reaction equations, arXiv e-prints. |
[13] |
J. Mu, B. Ahmad and S. Huang,
Existence and regularity of solutions to time-fractional diffusion equations, Computers & Mathematics with Applications, 73 (2017), 985-996.
doi: 10.1016/j.camwa.2016.04.039. |
[14] |
K. Mustapha and D. Schötzau,
Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations, IMA Journal of Numerical Analysis, 34 (2014), 1426-1446.
doi: 10.1093/imanum/drt048. |
[15] |
L. Pinto and E. Sousa,
Numerical solution of a time-space fractional Fokker Planck equation with variable force field and diffusion, Commun. Nonlinear Sci. Numer. Simul., 50 (2017), 211-228.
doi: 10.1016/j.cnsns.2017.03.004. |
[16] |
R.-N. Wang, D.-H. Chen and T.-J. Xiao,
Abstract fractional Cauchy problems with almost sectorial operators, Journal of Differential Equations, 252 (2012), 202-235.
doi: 10.1016/j.jde.2011.08.048. |
[17] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[1] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013 |
[2] |
Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 |
[3] |
Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041 |
[4] |
Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 |
[5] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[6] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[7] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021026 |
[8] |
Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 |
[9] |
Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 |
[10] |
Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007 |
[11] |
Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001 |
[12] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[13] |
María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza. Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28 (2) : 567-587. doi: 10.3934/era.2020030 |
[14] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[15] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[16] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[17] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[18] |
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 |
[19] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[20] |
Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]