We are concerned with the pointwise estimates of solutions to the scalar conservation law with a nonlocal dissipative term for arbitrary large initial data. Based on the Green's function method, time-frequency decomposition method as well as the classical energy estimates, pointwise estimates and the optimal decay rates are established in this paper. We emphasize that the decay rate is independent of the index s in the nonlocal dissipative term. This phenomenon is also coincident with the fact that the decay rate is determined by the low frequency part of the solution no matter the initial data is small or large.
Citation: |
[1] |
C. Chan, M. Czubak and L. Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst., 27 (2010), 847-861.
doi: 10.3934/dcds.2010.27.847.![]() ![]() ![]() |
[2] |
C. Chan and M. Czubak, Regularity of solutions for the critical N-dimensional Burgers's equation, Ann. I. H. Poincaré-AN., 27 (2010), 471-501.
doi: 10.1016/j.anihpc.2009.11.008.![]() ![]() ![]() |
[3] |
L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Annals of Mathematics, 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
[4] |
P. Constantin, A. J. Majda and E. Tabak, Formation of strong fronts in the 2-d quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
![]() ![]() |
[5] |
P. Constantin, A. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Communications in Mathematical Physics, 335 (2015), 93-141.
doi: 10.1007/s00220-014-2129-3.![]() ![]() ![]() |
[6] |
P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321.
doi: 10.1007/s00039-012-0172-9.![]() ![]() ![]() |
[7] |
P. Constantin and J. Wu, Behavior of solutions of 2d quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.
doi: 10.1137/S0036141098337333.![]() ![]() ![]() |
[8] |
A. Cordoba and D. Cordoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.
doi: 10.1007/s00220-004-1055-1.![]() ![]() ![]() |
[9] |
J. W. Cholewa and T. Dlotko, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst., Series B, 23 (2018), 2967-2988.
doi: 10.3934/dcdsb.2017149.![]() ![]() ![]() |
[10] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematicschen Wissenschaften, 325, 2005.
doi: 10.1007/3-540-29089-3.![]() ![]() ![]() |
[11] |
R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local disspation, J. Math. Pures. Appl., 93 (2010), 572-598.
doi: 10.1016/j.matpur.2009.10.007.![]() ![]() ![]() |
[12] |
W. Gao and C. Zhu, Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions, Math. Models Methods Appl. Sci., 18 (2008), 511-541.
doi: 10.1142/S0218202508002760.![]() ![]() ![]() |
[13] |
J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95 (1986), 325-344.
doi: 10.1007/BF00276840.![]() ![]() ![]() |
[14] |
K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24 (1971), 155-168.
![]() |
[15] |
H. Dong, D. Du and D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58 (2009), 807-821.
doi: 10.1512/iumj.2009.58.3505.![]() ![]() ![]() |
[16] |
I. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech., 282 (1995), 1-20.
doi: 10.1017/S0022112095000012.![]() ![]() ![]() |
[17] |
E. Hopf, The partial differential equation $u_t+uu_x = \mu u_xx$, Commmu. Pure. Appl. Math., 3 (1950), 201-230.
doi: 10.1002/cpa.3160030302.![]() ![]() ![]() |
[18] |
D. Hoff and K. Zumbrum, Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.
doi: 10.1512/iumj.1995.44.2003.![]() ![]() ![]() |
[19] |
D. Hoff and K. Zumbrum, Pointwise decay estimates for multidimensional Navior-Stokes diffusion waves, Z. Angew Math. Phys., 48 (1997), 1-18.
doi: 10.1007/s000330050049.![]() ![]() ![]() |
[20] |
S. Kawashima and S. Nishibata, Cauchy problem for amodel system of the radiating gas: weak solutions with a jump and classical solutions, Math. Models Methods Appl. Sci., 9 (1999), 69-91.
doi: 10.1142/S0218202599000063.![]() ![]() ![]() |
[21] |
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740.![]() ![]() ![]() |
[22] |
A. Kiselev, F. Nazarov and R. Shterenberg, Blow-up and regularity for fractal Burgers equations, Dynamics of PDE, 5 (2008), 211-240.
doi: 10.4310/DPDE.2008.v5.n3.a2.![]() ![]() ![]() |
[23] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2d dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3.![]() ![]() ![]() |
[24] |
D. B. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl., 35 (1971), 563-576.
doi: 10.1016/0022-247X(71)90204-6.![]() ![]() ![]() |
[25] |
F. Li and W. Wang, The pointwise estimates of solutions to the parabolic consevation law in multi-dimensions, Nonlinear Differ. Equ. Appl., 21 (2014), 87-103.
doi: 10.1007/s00030-013-0239-9.![]() ![]() ![]() |
[26] |
F. Li and F. Rong, Decay of solutions to fractal parabolic conservation laws with large initial data, Commmu. Pure. Appl. Anal., 12 (2013), 973-984.
doi: 10.3934/cpaa.2013.12.973.![]() ![]() ![]() |
[27] |
Y. Liu and S. Kawashima, Asymptotic behavior of solutions to a model system of a radiating gas, Commmu. Pure. Appl. Anal., 10 (2011), 209-223.
doi: 10.3934/cpaa.2011.10.209.![]() ![]() ![]() |
[28] |
T-P. Liu and Y. Zeng, Large time behavior of solutions general quasilinear hyperbolic-parabolic systerms of conservation laws, A. M. S. memoirs, (1997), 599.
doi: 10.1090/memo/0599.![]() ![]() ![]() |
[29] |
T-P. Liu and W. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Commu Math Phys, 196 (1998), 145-173.
doi: 10.1007/s002200050418.![]() ![]() ![]() |
[30] |
P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev. A., 40 (1989), 7193-7196.
doi: 10.1103/PhysRevA.40.7193.![]() ![]() ![]() |
[31] |
M. E. Schonbek, Decay of solution to parabolic conservation laws, Comm. Partial Differential Equations, 7 (1980), 449-473.
doi: 10.1080/0360530800882145.![]() ![]() ![]() |
[32] |
M. E. Schonbek, Uniform decay rates for parabolic conservation laws, Nonlinear Anal., 10 (1986), 943-956.
doi: 10.1016/0362-546X(86)90080-5.![]() ![]() ![]() |
[33] |
M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375.
doi: 10.1137/S0036141002409362.![]() ![]() ![]() |
[34] |
J. Smoller, Shock Waves and Reaction-diffusion Equations, Springer Science Business Media, 2012.
![]() ![]() |
[35] |
W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal. TMA, 71 (2009), 1180-1195.
doi: 10.1016/j.na.2008.11.050.![]() ![]() ![]() |
[36] |
W. Wang and W. Wang, Blow-up and global existence of solutions for a model system of the radiating gas, Nonlinear Analysis, 81 (2013), 12-30.
doi: 10.1016/j.na.2012.12.010.![]() ![]() ![]() |
[37] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron. J. Differential Equations, 56 (2001), 1-13.
![]() ![]() |
[38] |
L. Wang, W. Wang and X. Xu, Global existence of large solutions to conservation laws with nonlocal dissipation type terms (in Chinese), Sci. Sin. Math., 48 (2018), 589-608.
![]() |
[39] |
W. Wang and X. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimentions, J. Hyperbolic Differ. Equ., 3 (2005), 673-695.
doi: 10.1142/S0219891605000580.![]() ![]() ![]() |
[40] |
W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.
doi: 10.1006/jdeq.2000.3937.![]() ![]() ![]() |
[41] |
Z. Wu and W. Wang, Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multi-dimensions, Acta Math. Sci., 32 (2012), 1681-1702.
doi: 10.1016/S0252-9602(12)60134-9.![]() ![]() ![]() |
[42] |
W. Wang and Z. Wu, Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions, J. Differential Equations, 248 (2010), 1617-1636.
doi: 10.1016/j.jde.2010.01.003.![]() ![]() ![]() |
[43] |
W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Anal., 71 (2009), 1180-1195.
doi: 10.1016/j.na.2008.11.050.![]() ![]() ![]() |
[44] |
Y. Wang and H. Zhao, Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating, Commmu. Pure. Appl. Anal., 17 (2018), 347-374.
doi: 10.3934/cpaa.2018020.![]() ![]() ![]() |
[45] |
C. Zhang, F. Li and J. Duan, Long-time behavior of a class of nonlocal partial differential equations, Discrete Contin. Dyn. Syst., Series B, 23 (2018), 749-763.
doi: 10.3934/dcdsb.2018041.![]() ![]() ![]() |