November  2019, 18(6): 2961-2981. doi: 10.3934/cpaa.2019132

Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation

1. 

School of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

3. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, Jilin 130024, China

* Corresponding author

Received  August 2018 Revised  January 2019 Published  May 2019

Fund Project: This work is supported by the Natural Science Foundation of China (Grant Nos. 11871251, 11771185, 11671071 and 11871140), the Fundamental Research Funds for the Central Universities at Jilin University (no. 2017TD–18), and the Special Funds of Provincial Industrial Innovation in Jilin Province (no. 2017C028–1)

This paper is concerned with the Camassa-Holm-KP equation, which is a model for shallow water waves. By using the analysis of the phase space, we obtain some qualitative properties of equilibrium points and existence results of solitary wave solutions for the Camassa-Holm-KP equation without delay. Furthermore we show the existence of solitary wave solutions for the equation with a special local delay convolution kernel by combining the geometric singular perturbation theory and invariant manifold theory. In addition, we discuss the existence of solitary wave solutions for the Camassa-Holm-KP equation with strength $ 1 $ of nonlinearity, and prove the monotonicity of the wave speed by analyzing the ratio of the Abelian integral.

Citation: Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132
References:
[1] M. AblowitzP. Clarkson and So litons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998. Google Scholar
[2]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133. doi: 10.1016/j.jde.2006.08.015. Google Scholar

[3]

S. AiS. Chow and Y. Yi, Travelling wave solutions in a tissue interaction model for skin pattern formation, J. Dynam. Differential Equations, 15 (2003), 517-534. doi: 10.1023/B:JODY.0000009746.52357.28. Google Scholar

[4]

W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal., 196 (2002), 211-264. doi: 10.1016/S0022-1236(02)00013-7. Google Scholar

[5]

A. Biswas, 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2524-2527. doi: 10.1016/j.cnsns.2008.09.023. Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[7]

A. ChenL. Guo and X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differential Equations, 261 (2016), 5324-5349. doi: 10.1016/j.jde.2016.08.003. Google Scholar

[8]

Z. DuJ. Li and X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007. doi: 10.1016/j.jfa.2018.05.005. Google Scholar

[9]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[10]

B. Fuchssteiner and A. Fokas, Symplectic structures, their backland transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[11]

A. Gourley and G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991. Google Scholar

[12]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7. Google Scholar

[13]

C. HsuT. Yang and C. Yang, Diversity of traveling wave solutions in FitzHugh-Nagumo type equations, J. Differential Equations, 247 (2009), 1185-1205. doi: 10.1016/j.jde.2009.03.023. Google Scholar

[14]

P. Isaza and J. Mejia, On the support of solutions to the Kadomtsev-Petviashvili (KP-Ⅱ) equation, Commun. Pure Appl. Anal., 10 (2011), 1239-1255. doi: 10.3934/cpaa.2011.10.1239. Google Scholar

[15]

J. IsazaL. Mejia and N. Tzvetkov, A smoothing effect and polynomial growth of the Sobolev norms for the KP-Ⅱ equation, J. Differential Equations, 220 (2006), 1-17. doi: 10.1016/j.jde.2004.10.002. Google Scholar

[16]

C. Jones, Geometrical singular perturbation theory, In Dynamical Systems, Lecture Notes in Mathematics (R. Johnson ed.), vol. 1609. Springer, New York, 1995. doi: 10.1007/BFb0095239. Google Scholar

[17]

B. Kadomtsev and V. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541. Google Scholar

[18]

D. Korteweg and G. Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves, Philos. Mag. R Soc. London, 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[19]

S. Lai and Y. Xu, The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations, Math. Comput. Model., 28 (2008), 1089-1098. doi: 10.1016/j.mcm.2007.06.020. Google Scholar

[20]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 271 (2005), 393-430. doi: 10.1016/j.jde.2004.09.007. Google Scholar

[21]

C. Li and K. Lu, Slow divergence integral and its application to classical Liénard equations of degree 5, J. Differential Equations, 257 (2014), 4437-4469. doi: 10.1016/j.jde.2014.08.015. Google Scholar

[22]

C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910. doi: 10.1016/j.jde.2012.10.003. Google Scholar

[23]

X. Liu, Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 5505-5521. Google Scholar

[24]

X. LiuZ. Qiao and Z. Yin, On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure Appl. Anal., 13 (2014), 1283-1304. doi: 10.3934/cpaa.2014.13.1283. Google Scholar

[25]

W. Liu and E. Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations, J. Differential Equations, 225 (2006), 381-410. doi: 10.1016/j.jde.2005.10.006. Google Scholar

[26]

N. Lu and C. Zeng, Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differential Equations, 250 (2011), 4124-4176. doi: 10.1016/j.jde.2011.02.001. Google Scholar

[27]

P. Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334. doi: 10.1090/S0002-9947-05-03839-0. Google Scholar

[28]

L. MolinetJ. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅱ equation on the background of a non-localized solution, Ann. I. H. Poincare-AN, 28 (2011), 653-676. doi: 10.1016/j.anihpc.2011.04.004. Google Scholar

[29]

E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541. doi: 10.1016/j.jde.2014.08.016. Google Scholar

[30]

C. Ou and J. Wu, Persistence of wave fronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 238 (2007), 219-261. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[31]

V. Petviashvili and V. Yan'kov, Solitons and turbulence, Rev. Plasma Phys., XIV (1989), 1-62. Google Scholar

[32]

C. QuY. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477. doi: 10.1016/j.jfa.2013.09.021. Google Scholar

[33]

J. Saut and N. Tzvetkov, The cauchy problem for higher-order KP equations, J. Differential Equations, 153 (1999), 196-222. doi: 10.1006/jdeq.1998.3534. Google Scholar

[34]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations, 92 (1991), 252-281. doi: 10.1016/0022-0396(91)90049-F. Google Scholar

[35]

A. Tovbis, Breaking of symmetrical periodic solutions in a singularly perturbed KdV model, SIAM J. Math. Anal., 40 (2008), 1516-1549. doi: 10.1137/070694053. Google Scholar

[36]

A. Wazwaz, The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl Math Comput, 170 (2005), 347-360. doi: 10.1016/j.amc.2004.12.002. Google Scholar

[37]

M. WeiX. Sun and S. Tang, Single peak solitary wave solutions for the CH-KP(2, 1) equation under boundary condition, J. Differential Equations, 259 (2015), 628-641. doi: 10.1016/j.jde.2015.02.015. Google Scholar

[38]

L. YangZ. RongS. Zhou and C. Mu, Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 38 (2018), 5205-5220. doi: 10.3934/dcds.2018230. Google Scholar

[39]

S. Yang and T. Xu, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 329-341. doi: 10.3934/dcds.2018016. Google Scholar

[40]

V. Zakharov and E. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288. Google Scholar

[41]

K. ZhangS. Tang and Z. Wang, Bifurcation of travelling wave solutions for the generalized Camassa-Holm-KP equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 564-572. doi: 10.1016/j.cnsns.2009.04.027. Google Scholar

[42]

L. Zhang and B. Liu, Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 2655-2685. doi: 10.3934/dcds.2018112. Google Scholar

show all references

References:
[1] M. AblowitzP. Clarkson and So litons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998. Google Scholar
[2]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133. doi: 10.1016/j.jde.2006.08.015. Google Scholar

[3]

S. AiS. Chow and Y. Yi, Travelling wave solutions in a tissue interaction model for skin pattern formation, J. Dynam. Differential Equations, 15 (2003), 517-534. doi: 10.1023/B:JODY.0000009746.52357.28. Google Scholar

[4]

W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal., 196 (2002), 211-264. doi: 10.1016/S0022-1236(02)00013-7. Google Scholar

[5]

A. Biswas, 1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2524-2527. doi: 10.1016/j.cnsns.2008.09.023. Google Scholar

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[7]

A. ChenL. Guo and X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differential Equations, 261 (2016), 5324-5349. doi: 10.1016/j.jde.2016.08.003. Google Scholar

[8]

Z. DuJ. Li and X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007. doi: 10.1016/j.jfa.2018.05.005. Google Scholar

[9]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[10]

B. Fuchssteiner and A. Fokas, Symplectic structures, their backland transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[11]

A. Gourley and G. Ruan, Convergence and traveling wave fronts in functional differential equations with nonlocal terms: A competition model, SIAM. J. Math. Anal., 35 (2003), 806-822. doi: 10.1137/S003614100139991. Google Scholar

[12]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7. Google Scholar

[13]

C. HsuT. Yang and C. Yang, Diversity of traveling wave solutions in FitzHugh-Nagumo type equations, J. Differential Equations, 247 (2009), 1185-1205. doi: 10.1016/j.jde.2009.03.023. Google Scholar

[14]

P. Isaza and J. Mejia, On the support of solutions to the Kadomtsev-Petviashvili (KP-Ⅱ) equation, Commun. Pure Appl. Anal., 10 (2011), 1239-1255. doi: 10.3934/cpaa.2011.10.1239. Google Scholar

[15]

J. IsazaL. Mejia and N. Tzvetkov, A smoothing effect and polynomial growth of the Sobolev norms for the KP-Ⅱ equation, J. Differential Equations, 220 (2006), 1-17. doi: 10.1016/j.jde.2004.10.002. Google Scholar

[16]

C. Jones, Geometrical singular perturbation theory, In Dynamical Systems, Lecture Notes in Mathematics (R. Johnson ed.), vol. 1609. Springer, New York, 1995. doi: 10.1007/BFb0095239. Google Scholar

[17]

B. Kadomtsev and V. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541. Google Scholar

[18]

D. Korteweg and G. Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves, Philos. Mag. R Soc. London, 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[19]

S. Lai and Y. Xu, The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations, Math. Comput. Model., 28 (2008), 1089-1098. doi: 10.1016/j.mcm.2007.06.020. Google Scholar

[20]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 271 (2005), 393-430. doi: 10.1016/j.jde.2004.09.007. Google Scholar

[21]

C. Li and K. Lu, Slow divergence integral and its application to classical Liénard equations of degree 5, J. Differential Equations, 257 (2014), 4437-4469. doi: 10.1016/j.jde.2014.08.015. Google Scholar

[22]

C. Li and H. Zhu, Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910. doi: 10.1016/j.jde.2012.10.003. Google Scholar

[23]

X. Liu, Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, Discrete. Contin. Dyn. Syst., 38 (2018), 5505-5521. Google Scholar

[24]

X. LiuZ. Qiao and Z. Yin, On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure Appl. Anal., 13 (2014), 1283-1304. doi: 10.3934/cpaa.2014.13.1283. Google Scholar

[25]

W. Liu and E. Vleck, Turning points and traveling waves in FitzHugh-Nagumo type equations, J. Differential Equations, 225 (2006), 381-410. doi: 10.1016/j.jde.2005.10.006. Google Scholar

[26]

N. Lu and C. Zeng, Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differential Equations, 250 (2011), 4124-4176. doi: 10.1016/j.jde.2011.02.001. Google Scholar

[27]

P. Maesschalck and F. Dumortier, Canard solutions at non-generic turning points, Trans. Amer. Math. Soc., 358 (2006), 2291-2334. doi: 10.1090/S0002-9947-05-03839-0. Google Scholar

[28]

L. MolinetJ. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅱ equation on the background of a non-localized solution, Ann. I. H. Poincare-AN, 28 (2011), 653-676. doi: 10.1016/j.anihpc.2011.04.004. Google Scholar

[29]

E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations, 257 (2014), 4525-4541. doi: 10.1016/j.jde.2014.08.016. Google Scholar

[30]

C. Ou and J. Wu, Persistence of wave fronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 238 (2007), 219-261. doi: 10.1016/j.jde.2006.12.010. Google Scholar

[31]

V. Petviashvili and V. Yan'kov, Solitons and turbulence, Rev. Plasma Phys., XIV (1989), 1-62. Google Scholar

[32]

C. QuY. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477. doi: 10.1016/j.jfa.2013.09.021. Google Scholar

[33]

J. Saut and N. Tzvetkov, The cauchy problem for higher-order KP equations, J. Differential Equations, 153 (1999), 196-222. doi: 10.1006/jdeq.1998.3534. Google Scholar

[34]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, J. Differential Equations, 92 (1991), 252-281. doi: 10.1016/0022-0396(91)90049-F. Google Scholar

[35]

A. Tovbis, Breaking of symmetrical periodic solutions in a singularly perturbed KdV model, SIAM J. Math. Anal., 40 (2008), 1516-1549. doi: 10.1137/070694053. Google Scholar

[36]

A. Wazwaz, The Camassa-Holm-KP equations with compact and noncompact travelling wave solutions, Appl Math Comput, 170 (2005), 347-360. doi: 10.1016/j.amc.2004.12.002. Google Scholar

[37]

M. WeiX. Sun and S. Tang, Single peak solitary wave solutions for the CH-KP(2, 1) equation under boundary condition, J. Differential Equations, 259 (2015), 628-641. doi: 10.1016/j.jde.2015.02.015. Google Scholar

[38]

L. YangZ. RongS. Zhou and C. Mu, Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics, Discrete. Contin. Dyn. Syst., 38 (2018), 5205-5220. doi: 10.3934/dcds.2018230. Google Scholar

[39]

S. Yang and T. Xu, Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 329-341. doi: 10.3934/dcds.2018016. Google Scholar

[40]

V. Zakharov and E. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288. Google Scholar

[41]

K. ZhangS. Tang and Z. Wang, Bifurcation of travelling wave solutions for the generalized Camassa-Holm-KP equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 564-572. doi: 10.1016/j.cnsns.2009.04.027. Google Scholar

[42]

L. Zhang and B. Liu, Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system, Discrete. Contin. Dyn. Syst., 38 (2018), 2655-2685. doi: 10.3934/dcds.2018112. Google Scholar

Figure 1.  The phase portraits of system (19) for n is odd
Figure 2.  The phase portraits of system (19) for n is even
[1]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[2]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[3]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[4]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[5]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[6]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[7]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[8]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[9]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[10]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[11]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[12]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[13]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[14]

Li Yang, Chunlai Mu, Shouming Zhou, Xinyu Tu. The global conservative solutions for the generalized camassa-holm equation. Electronic Research Archive, 2019, 27: 37-67. doi: 10.3934/era.2019009

[15]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[16]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[17]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[18]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[19]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[20]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (53)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]