-
Previous Article
When fast diffusion and reactive growth both induce accelerating invasions
- CPAA Home
- This Issue
-
Next Article
Asymptotic spreading for a time-periodic predator-prey system
$ L^{p, q} $ estimates on the transport density
Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France |
In this paper, we show a new regularity result on the transport density $ \sigma $ in the classical Monge-Kantorovich optimal mass transport problem between two measures, $ \mu $ and $ \nu $, having some summable densities, $ f^+ $ and $ f^- $. More precisely, we prove that the transport density $ \sigma $ belongs to $ L^{p,q}(\Omega) $ as soon as $ f^+,\,f^- \in L^{p,q}(\Omega) $.
References:
[1] |
L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics (1812), Springer, New York, 2003, 1–52.
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[3] |
R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-30034-4. |
[4] |
L. De Pascale, L. C. Evans and A. Pratelli,
Integral estimates for transport densities, Bull. of the London Math. Soc., 36 (2004), 383-395.
doi: 10.1112/S0024609303003035. |
[5] |
L. De Pascale and A. Pratelli,
Sharp summability for Monge transport density via interpolation, ESAIM Control Optim. Calc. Var., 10 (2004), 549-552.
doi: 10.1051/cocv:2004019. |
[6] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no. 653.
doi: 10.1090/memo/0653. |
[7] |
M. Feldman and R. McCann,
Uniqueness and transport density in Monge's mass transportation problem, Calc. Var. Par. Diff. Eq., 15 (2002), 81-113.
doi: 10.1007/s005260100119. |
[8] |
L. Kantorovich,
On the transfer of masses, Dokl. Acad. Nauk. USSR, 37 (1942), 7-8.
|
[9] |
G. Monge,
Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris, (1781), 666-704.
|
[10] |
F. Santambrogio,
Absolute continuity and summability of transport densities: simpler proofs and new estimates, Calc. Var. Par. Diff. Eq., 36 (2009), 343-354.
doi: 10.1007/s00526-009-0231-8. |
[11] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhäuser Basel (2015).
doi: 10.1007/978-3-319-20828-2. |
[12] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, 2003.
doi: 10.1007/b12016. |
show all references
References:
[1] |
L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics (1812), Springer, New York, 2003, 1–52.
doi: 10.1007/978-3-540-39189-0_1. |
[2] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[3] |
R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer International Publishing, 2016.
doi: 10.1007/978-3-319-30034-4. |
[4] |
L. De Pascale, L. C. Evans and A. Pratelli,
Integral estimates for transport densities, Bull. of the London Math. Soc., 36 (2004), 383-395.
doi: 10.1112/S0024609303003035. |
[5] |
L. De Pascale and A. Pratelli,
Sharp summability for Monge transport density via interpolation, ESAIM Control Optim. Calc. Var., 10 (2004), 549-552.
doi: 10.1051/cocv:2004019. |
[6] |
L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), no. 653.
doi: 10.1090/memo/0653. |
[7] |
M. Feldman and R. McCann,
Uniqueness and transport density in Monge's mass transportation problem, Calc. Var. Par. Diff. Eq., 15 (2002), 81-113.
doi: 10.1007/s005260100119. |
[8] |
L. Kantorovich,
On the transfer of masses, Dokl. Acad. Nauk. USSR, 37 (1942), 7-8.
|
[9] |
G. Monge,
Mémoire sur la théorie des déblais et des remblais, Histoire de l'Académie Royale des Sciences de Paris, (1781), 666-704.
|
[10] |
F. Santambrogio,
Absolute continuity and summability of transport densities: simpler proofs and new estimates, Calc. Var. Par. Diff. Eq., 36 (2009), 343-354.
doi: 10.1007/s00526-009-0231-8. |
[11] |
F. Santambrogio, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhäuser Basel (2015).
doi: 10.1007/978-3-319-20828-2. |
[12] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, 2003.
doi: 10.1007/b12016. |
[1] |
Giuseppe Buttazzo, Eugene Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet conditions. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 607-628. doi: 10.3934/dcds.2005.12.607 |
[2] |
Abbas Moameni. Invariance properties of the Monge-Kantorovich mass transport problem. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2653-2671. doi: 10.3934/dcds.2016.36.2653 |
[3] |
Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure and Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853 |
[4] |
Zuo Quan Xu, Jia-An Yan. A note on the Monge-Kantorovich problem in the plane. Communications on Pure and Applied Analysis, 2015, 14 (2) : 517-525. doi: 10.3934/cpaa.2015.14.517 |
[5] |
Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems and Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037 |
[6] |
Nassif Ghoussoub, Bernard Maurey. Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1465-1480. doi: 10.3934/dcds.2014.34.1465 |
[7] |
Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323 |
[8] |
Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069 |
[9] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[10] |
Dario Cordero-Erausquin, Alessio Figalli. Regularity of monotone transport maps between unbounded domains. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7101-7112. doi: 10.3934/dcds.2019297 |
[11] |
Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791 |
[12] |
Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237 |
[13] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[14] |
Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2199-2214. doi: 10.3934/dcds.2021188 |
[15] |
Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004 |
[16] |
Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218 |
[17] |
Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59 |
[18] |
Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705 |
[19] |
Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009 |
[20] |
Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]