\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents

  • *Corresponding author

    *Corresponding author

The authors are supported by NSFC grants 11771342 and 11571259

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we prove the existence of bounded positive solutions for a class of semilinear degenerate elliptic equations involving supercritical cone Sobolev exponents. We also obtain the existence of multiple solutions by the Ljusternik-Schnirelman theory.

    Mathematics Subject Classification: 35J20, 58J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Analysis, 14 (1976), 349-381.  doi: 10.1016/0022-1236(73)90051-7.
    [2] Daomin Cao, Multiple solutions of a semilinear elliptic equation in $\mathbb{R}^N$, Ann. Inst. H. Poincaré, Analyse Nonlinéaire, 10 (1993), 593-604.  doi: 10.1016/S0294-1449(16)30198-6.
    [3] J. Chabrowski, J. Yang, Existence theorems for elliptic equations involving supercritical Sobolev exponent, Advances in Differential Equations, 2 (1997), 231–256.
    [4] H. ChenX. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Glob. Anal. Geom., 39 (2011), 27-43.  doi: 10.1007/s10455-010-9226-0.
    [5] H. ChenX. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities, Calc. Var. Partial Differ. Equ., 43 (2012), 463-484.  doi: 10.1007/s00526-011-0418-7.
    [6] H. ChenX. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differ. Equ., 252 (2012), 4200-4228.  doi: 10.1016/j.jde.2011.12.009.
    [7] H. ChenX. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differ. Equ., 252 (2012), 4289-4314.  doi: 10.1016/j.jde.2012.01.011.
    [8] H. ChenX. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations, J. Funct. Analysis, 266 (2014), 3815-3839.  doi: 10.1016/j.jfa.2013.12.012.
    [9] H. ChenR. QiaoP. Luo and et al., Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators, Sci. China Math., 57 (2014), 2235-2246.  doi: 10.1007/s11425-014-4895-y.
    [10] H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on singular manifolds, Mathematische Nachrichten, 285 (2012), 1370–1384.
    [11] S. CoriascoE. Schrohe and J. Seiler, Realizations of differential operators on conic manifolds with boundary, Ann. Glob. Anal. Geom., 31 (2007), 223-285.  doi: 10.1007/s10455-006-9019-7.
    [12] J. V. Egorov and B. W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Operator Theory, Advances and Applications 93, Birkh$\ddot{\text{o}}$user, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.
    [13] H. Fan, Existence theorems for a class of edge-degenerate elliptic wquations on singular manifolds, Proc. Edinb. Math. Soc., 2015 (2015), 1-23.  doi: 10.1017/S0013091514000145.
    [14] H. Fan, Multiple positive solutions for degenerate elliptic equations with singularity and critical cone Sobolev exponents, J. Pseudo-Differ. Oper. Appl., (2018).
    [15] H. Fan and X. Liu, Multiple positive solutions for degenerate elliptic equations with critical cone Sobolev exponents on singular manifolds, Electronic Journal of Differential Equations, 181 (2013), 1–22.
    [16] X. Liu and S. Zhang, Multiple positive solutions for semi-linear elliptic systems involving sign-changing weight on manifolds with conical singularities, J. Pseudo-Differ. Oper. Appl., 7 (2016), 451-471.  doi: 10.1007/s11868-016-0147-y.
    [17] V. A. Kondratev, Boundary value problems for elliptic equations in domains with conical points, Tr. Most. Mat. Obs., 16 (1967), 209–292.
    [18] M. Lesch, Differential operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Texte für Mathematik 136, Teubner-Verlag, Leipig, 1997.
    [19] R. B. Melrose and G. A. Mendoza, Elliptic Operators of Totally Characteristic Type, Mathematical Science Research Institute, MSRI 047–83, 1983.
    [20] J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Communications on Pure and Applied Mathematics, 13 (1960), 457-468.  doi: 10.1002/cpa.3160130308.
    [21] P. H. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. J. Maths, 23 (1974), 729-754.  doi: 10.1512/iumj.1974.23.23061.
    [22] P. H. Rabinowitz, Minimax methods in critical points theory with applications to differential equation, CBMS Reg. Conf. Ser. Math, vol. 65 (Amer. Math. Soc), Providence, RI, 1986. doi: 10.1090/cbms/065.
    [23] M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.
  • 加载中
SHARE

Article Metrics

HTML views(518) PDF downloads(258) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return