• Previous Article
    Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    The effect of nonlocal term on the superlinear elliptic equations in $ \mathbb{R}^{N} $
November  2019, 18(6): 3243-3265. doi: 10.3934/cpaa.2019146

Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems

1. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China

2. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

* Corresponding author

Received  December 2018 Revised  February 2019 Published  May 2019

Fund Project: Research of the third author was supported by NSFC. No.11601311 and the fund of Shanghai Normal University.

In this note, we study the mean curvature flow and the prescribed mean curvature type equation with general capillary-type boundary condition, which is $ u_{\nu} = -\phi(x)(1+|Du|^2)^\frac{1-q}{2} $ for any parameter $ q>0 $. Using the maximum principle, we prove the gradient estimates for the solutions of such a class of boundary value problems. As a consequence, we obtain the corresponding existence theorem for a class of mean curvature equations. In addition, we study the related additive eigenvalue problem for general boundary value problems and describe the asymptotic behavior of the solution at infinity time. The originality of the paper lies in the range $ 0<q<1 $, since there are no any related results before. For parabolic case, we generalize the result of Ma-Wang-Wei [25] to any $ q>0 $. And in elliptic case, we generalize the results in [32] to any $ q\ge 0 $ and to any bounded smooth domain.

Citation: Jun Wang, Wei Wei, Jinju Xu. Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3243-3265. doi: 10.3934/cpaa.2019146
References:
[1]

S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 2 (1994), 101-111.  doi: 10.1007/BF01234317.  Google Scholar

[2]

B. Andrews and J. Clutterbuck, Time-interior gradient estimates for quasilinear parabolic equations, Indiana Univ. Math. J., 58 (2009), 351-380.  doi: 10.1512/iumj.2009.58.3756.  Google Scholar

[3]

G. BarlesH. Ishii and H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Rational Mech. Anal., 204 (2012), 515-558.  doi: 10.1007/s00205-011-0484-1.  Google Scholar

[4]

G. Barles and H. Mitake, A PDE approach to large-time asymptotics for boundary value problems for nonconvex Hamilton-Jacobi equations, Comm. in Partial Differential Equations, 37 (2012), 136-168.  doi: 10.1080/03605302.2011.553645.  Google Scholar

[5]

K. A. Brakke, The Motion of A Surface by Its Mean Curvature, Ph.D. Thesis, Princeton University, 1975.  Google Scholar

[6]

P. Concus and R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), 177-198.  doi: 10.1007/BF02392113.  Google Scholar

[7]

C. M. EllottY. Giga and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal., 34 (2003), 861-881.  doi: 10.1137/S003614100139957X.  Google Scholar

[8]

R.Finn, Equilibrium Capillary Surfaces, Fundamental Principle of mathematics, 284, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8584-4.  Google Scholar

[9]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Piss Ser. (4), 3 (1976), 157–175.  Google Scholar

[10]

E. Giusti, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), 111-137.  doi: 10.1007/BF01393250.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag Berlin, 2001.  Google Scholar

[12]

B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), AK Peters, Wellesley, MA, (1996), 47–56.  Google Scholar

[13]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.   Google Scholar

[14]

G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[15]

G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equations., 77 (1989), 369-378.  doi: 10.1016/0022-0396(89)90149-6.  Google Scholar

[16]

L. Hormander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal., 62 (1976), 1-52.  doi: 10.1007/BF00251855.  Google Scholar

[17]

H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications, in Lecture Notes in Math., 2074, Springer, Heidelberg, 111–249, 2013. doi: 10.1007/978-3-642-36433-4_3.  Google Scholar

[18]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. in Partial Differential Equations, 13 (1988), 1-31.  doi: 10.1080/03605308808820536.  Google Scholar

[19]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. in Partial Differential Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar

[20]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[21]

G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Transactions of the American Mathematical Society, 295 (1986), 509-546.  doi: 10.2307/2000050.  Google Scholar

[22]

P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 52 (1985), 793-820.  doi: 10.1215/S0012-7094-85-05242-1.  Google Scholar

[23]

H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton- Jacobi equations, NoDEA Nonlinear Differential Equations App., 15 (2008), 347-362.  doi: 10.1007/s00030-008-7043-y.  Google Scholar

[24]

H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58 (2008), 393-410.  doi: 10.1007/s00245-008-9041-1.  Google Scholar

[25]

X. N. MaP. H. Wang and W. Wei, Mean curvature equation and mean curvature type flow with non-zero Neumann boundary conditions on strictly convex domains, J. Func. Anal., 274 (2018), 252-277.  doi: 10.1016/j.jfa.2017.10.002.  Google Scholar

[26]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Advances in Mathematics, 290 (2016), 1010-1039.  doi: 10.1016/j.aim.2015.10.031.  Google Scholar

[27]

O. C. Schnürer and R. S. Hartmut, Translating solutions for Gauss curvature flows with Neumann boundary conditions, Pacific J. Math., 213 (2004), 89-109.  doi: 10.2140/pjm.2004.213.89.  Google Scholar

[28]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar

[29]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar

[30]

N. N. Ural'tseva, The solvability of the capillary problem, (Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp., 4 (1973), 54–64.  Google Scholar

[31]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[32]

J. J. Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal., 15 (2016), 1719-1742.  doi: 10.3934/cpaa.2016010.  Google Scholar

[33]

J. J. Xu, Mean curvature flow of graphs with Neumann boundary conditions, Manuscripta Mathematica, 158 (2019), 75-84.  doi: 10.1007/s00229-018-1007-2.  Google Scholar

show all references

References:
[1]

S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var., 2 (1994), 101-111.  doi: 10.1007/BF01234317.  Google Scholar

[2]

B. Andrews and J. Clutterbuck, Time-interior gradient estimates for quasilinear parabolic equations, Indiana Univ. Math. J., 58 (2009), 351-380.  doi: 10.1512/iumj.2009.58.3756.  Google Scholar

[3]

G. BarlesH. Ishii and H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Rational Mech. Anal., 204 (2012), 515-558.  doi: 10.1007/s00205-011-0484-1.  Google Scholar

[4]

G. Barles and H. Mitake, A PDE approach to large-time asymptotics for boundary value problems for nonconvex Hamilton-Jacobi equations, Comm. in Partial Differential Equations, 37 (2012), 136-168.  doi: 10.1080/03605302.2011.553645.  Google Scholar

[5]

K. A. Brakke, The Motion of A Surface by Its Mean Curvature, Ph.D. Thesis, Princeton University, 1975.  Google Scholar

[6]

P. Concus and R. Finn, On capillary free surfaces in the absence of gravity, Acta Math., 132 (1974), 177-198.  doi: 10.1007/BF02392113.  Google Scholar

[7]

C. M. EllottY. Giga and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations, SIAM J. Math. Anal., 34 (2003), 861-881.  doi: 10.1137/S003614100139957X.  Google Scholar

[8]

R.Finn, Equilibrium Capillary Surfaces, Fundamental Principle of mathematics, 284, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8584-4.  Google Scholar

[9]

C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Piss Ser. (4), 3 (1976), 157–175.  Google Scholar

[10]

E. Giusti, On the equation of surfaces of prescribed mean curvature: existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), 111-137.  doi: 10.1007/BF01393250.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag Berlin, 2001.  Google Scholar

[12]

B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), AK Peters, Wellesley, MA, (1996), 47–56.  Google Scholar

[13]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.   Google Scholar

[14]

G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480.  doi: 10.1007/BF01388742.  Google Scholar

[15]

G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equations., 77 (1989), 369-378.  doi: 10.1016/0022-0396(89)90149-6.  Google Scholar

[16]

L. Hormander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal., 62 (1976), 1-52.  doi: 10.1007/BF00251855.  Google Scholar

[17]

H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications, in Lecture Notes in Math., 2074, Springer, Heidelberg, 111–249, 2013. doi: 10.1007/978-3-642-36433-4_3.  Google Scholar

[18]

N. J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. in Partial Differential Equations, 13 (1988), 1-31.  doi: 10.1080/03605308808820536.  Google Scholar

[19]

G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. in Partial Differential Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar

[20]

G. M. Lieberman, Oblique Boundary Value Problems for Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8679.  Google Scholar

[21]

G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Transactions of the American Mathematical Society, 295 (1986), 509-546.  doi: 10.2307/2000050.  Google Scholar

[22]

P. L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Mathematical Journal, 52 (1985), 793-820.  doi: 10.1215/S0012-7094-85-05242-1.  Google Scholar

[23]

H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton- Jacobi equations, NoDEA Nonlinear Differential Equations App., 15 (2008), 347-362.  doi: 10.1007/s00030-008-7043-y.  Google Scholar

[24]

H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints, Appl. Math. Optim., 58 (2008), 393-410.  doi: 10.1007/s00245-008-9041-1.  Google Scholar

[25]

X. N. MaP. H. Wang and W. Wei, Mean curvature equation and mean curvature type flow with non-zero Neumann boundary conditions on strictly convex domains, J. Func. Anal., 274 (2018), 252-277.  doi: 10.1016/j.jfa.2017.10.002.  Google Scholar

[26]

X. N. Ma and J. J. Xu, Gradient estimates of mean curvature equations with Neumann boundary condition, Advances in Mathematics, 290 (2016), 1010-1039.  doi: 10.1016/j.aim.2015.10.031.  Google Scholar

[27]

O. C. Schnürer and R. S. Hartmut, Translating solutions for Gauss curvature flows with Neumann boundary conditions, Pacific J. Math., 213 (2004), 89-109.  doi: 10.2140/pjm.2004.213.89.  Google Scholar

[28]

L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar

[29]

J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar

[30]

N. N. Ural'tseva, The solvability of the capillary problem, (Russian) Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom.Vyp., 4 (1973), 54–64.  Google Scholar

[31]

X. J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[32]

J. J. Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal., 15 (2016), 1719-1742.  doi: 10.3934/cpaa.2016010.  Google Scholar

[33]

J. J. Xu, Mean curvature flow of graphs with Neumann boundary conditions, Manuscripta Mathematica, 158 (2019), 75-84.  doi: 10.1007/s00229-018-1007-2.  Google Scholar

[1]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[5]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[6]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[8]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[9]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[11]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[12]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[16]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[17]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[18]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[19]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[20]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (316)
  • HTML views (209)
  • Cited by (0)

Other articles
by authors

[Back to Top]