[1]
|
B. Adams, S. A. Smith, R. S. Strichartz and A. Teplyaev, The spectrum of the Laplacian on the pentagasket, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, 1–24.
|
[2]
|
E. Akkermans, O. Benichou and G. V. Dunne, A. Teplyaev and R. Voituriez, Spatial log-periodic oscillations of first-passage observables in fractals, Phys. Rev. E, 86 (2012), 061125.
|
[3]
|
E. Akkermans, G. V. Dunne and E. Levy, Wave propagation in one-dimension: Methods and applications to complex and fractal structures, Optics of Aperiodic Structures - Fundamentals and Device Applications, L. Dal Negro (Ed), Pan Stanford Press, 2014, 407–449.
|
[4]
|
P. Alonso Ruiz, U. Freiberg and J. Kigami, Completely symmetric resistance forms on the stretched Sierpiński gasket, J. of Fractal Geometry, 5 (2018), 227-277.
doi: 10.4171/JFG/61.
|
[5]
|
P. Alonso-Ruiz, D. J. Kelleher and A. Teplyaev, Energy and Laplacian on Hanoi-type fractal quantum graphs, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 165206.
doi: 10.1088/1751-8113/49/16/165206.
|
[6]
|
Patricia Alonso Ruiz, Power dissipation in fractal Feynman-Sierpinski AC circuits, J. Math. Phys., 58 (2017), 073503, 16.
doi: 10.1063/1.4994197.
|
[7]
|
N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst and A. Teplyaev, Vibration modes of 3 n -gaskets and other fractals, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 015101.
doi: 10.1088/1751-8113/41/1/015101.
|
[8]
|
M. Begué, T. Kalloniatis and R. S. Strichartz, Harmonic functions and the spectrum of the Laplacian on the Sierpinski carpet, Fractals, 21 (2013), 1350002, 32.
doi: 10.1142/S0218348X13500023.
|
[9]
|
O. Ben-Bassat, R. S. Strichartz and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal., 166 (1999), 197-217.
doi: 10.1006/jfan.1999.3431.
|
[10]
|
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013.
|
[11]
|
J. P. Chen, L. G. Rogers, L. Anderson, U. Andrews, A. Brzoska, A. Coffey, H. Davis, L. Fisher, M. Hansalik, S. Loew and A. Teplyaev, Power dissipation in fractal AC circuits, J. Phys. A, 50 (2017), 325205, 20.
doi: 10.1088/1751-8121/aa7a66.
|
[12]
|
Y. Chen, H. Gu, R. S. Strichartz and Z. Zhou, Hybrid fractals, Available at http://www.math.cornell.edu/~harry970804/, 2017.
|
[13]
|
M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992), 1-35.
doi: 10.1007/BF00249784.
|
[14]
|
B. M. Hambly, V. Metz and A. Teplyaev, Self-similar energies on post-critically finite self-similar fractals, J. London Math. Soc., 74 (2006), 93-112.
doi: 10.1112/S002461070602312X.
|
[15]
|
B. M. Hambly and S. O. G. Nyberg, Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem, Proc. Edinb. Math. Soc., 46 (2003), 1-34.
doi: 10.1017/S0013091500000730.
|
[16]
|
M. Hata, On some properties of set-dynamical systems, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 99-102.
|
[17]
|
M. Hinz, Sup-norm-closable bilinear forms and Lagrangians, Ann. Mat. Pura Appl., 195 (2016), 1021-1054.
doi: 10.1007/s10231-015-0503-1.
|
[18]
|
M. Hinz and A. Teplyaev, Closability, regularity, and approximation by graphs for separable bilinear forms, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 441 (2015), no. Veroyatnost$\prime$ i Statistika. 22,299–317.
doi: 10.1007/s10958-016-3149-7.
|
[19]
|
M. Ionescu, L. G. Rogers and A. Teplyaev, Derivations and Dirichlet forms on fractals, J. Funct. Anal., 263 (2012), 2141-2169.
doi: 10.1016/j.jfa.2012.05.021.
|
[20]
|
J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math., 6 (1989), 259-290.
doi: 10.1007/BF03167882.
|
[21]
|
_____, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721–755.
doi: 10.2307/2154402.
|
[22]
|
_____, Analysis on Fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511470943.
|
[23]
|
_____, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc., 216 (2012), ⅵ+132.
|
[24]
|
J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys., 158 (1993), 93-125.
|
[25]
|
R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988), 811-829.
doi: 10.2307/2000940.
|
[26]
|
J. Murai, Diffusion processes on mandala, Osaka J. Math., 32 (1995), 887-917.
|
[27]
|
L. G. Rogers and A. Teplyaev, Laplacians on the basilica Julia sets, Commun. Pure Appl. Anal., 9 (2010), 211-231.
doi: 10.3934/cpaa.2010.9.211.
|
[28]
|
R. S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Funct. Anal., 174 (2000), 76-127.
doi: 10.1006/jfan.2000.3580.
|
[29]
|
_____, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006, A tutorial.
|
[30]
|
R. S. Strichartz and J. Zhu, Spectrum of the Laplacian on the Vicsek set "with no loose ends", Fractals, 25 (2017), 1750062, 15.
doi: 10.1142/S0218348X17500621.
|
[31]
|
A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math., 60 (2008), 457-480.
doi: 10.4153/CJM-2008-022-3.
|