January  2020, 19(1): 85-102. doi: 10.3934/cpaa.2020005

Dynamics of spatially heterogeneous viral model with time delay

1. 

School of Science, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China

2. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

3. 

School of Science, Jimei University, Xiamen, Fujian, 361021, China

* Corresponding author

Received  August 2018 Revised  January 2019 Published  July 2019

Fund Project: Hong Yang is supported by China-DSTF grant zd-2016-091, Junjie Wei is supported by China-NNSF grant 11771109.

A delayed reaction-diffusion virus model with a general incidence function and spatially dependent parameters is investigated. The basic reproduction number for the model is derived, and the uniform persistence of solutions and global attractively of the equilibria are proved. We also show the global attractivity of the positive equilibria via constructing Lyapunov functional, in case that all the parameters are spatially independent. Numerical simulations are finally conducted to illustrate these analytical results.

Citation: Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005
References:
[1]

C-M. BraunerD. JollyL. Lorenzi and P. Thiebaut, Heterogeneous viral environment in an HIV spatial model, Disc. Cont. Dyn. Syst. Ser. B., 15 (2011), 545-572.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[2]

K. Deimling, Nonlinear Functional Analysis, Berlin: Springer-Verlag, 1988. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, New York, 1993.  Google Scholar

[4]

M. LewisJ. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23.  doi: 10.1007/s11538-005-9018-z.  Google Scholar

[5]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[6]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[7]

P. Magal and X-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[8]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[9]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal., 25 (2015), 64-78.  doi: 10.1016/j.nonrwa.2015.03.002.  Google Scholar

[10]

A. MuraseT. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.  doi: 10.1007/s00285-005-0321-y.  Google Scholar

[11]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.   Google Scholar

[12]

A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biology, 11 (2013), 96. Google Scholar

[13]

H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Providence (RI): American Mathematical Society Providence, 41 (1995), 174.  Google Scholar

[14]

H. L. Smith and X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[15]

H. ShuL. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.  doi: 10.1137/120896463.  Google Scholar

[16]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[17]

F- B WangY. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329.  doi: 10.1080/00036811.2014.955797.  Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78-95.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

[19]

W. Wang and X-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[20]

W. Wang and X-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.  doi: 10.1137/140981769.  Google Scholar

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[22]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theoretical Biology, 257 (2009), 499-509.  doi: 10.1016/j.jtbi.2009.01.001.  Google Scholar

[23]

H. Yang and J. Wei, Global behaviours of an in-host viral model with general incidence terms, Appl. Anal., 97 (2018), 2431-2449.  doi: 10.1080/00036811.2017.1376246.  Google Scholar

[24]

H. Yang and J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Disc. Cont. Dyn. Syst. Ser. B., 20 (2015), 1573-1582.  doi: 10.3934/dcdsb.2015.20.1573.  Google Scholar

[25]

H. Yang and J. Wei, Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response, Nonlinear Dynam., 82 (2015), 713-722.  doi: 10.1007/s11071-015-2189-8.  Google Scholar

[26]

X. Yu and X-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Diff. Equ., 261 (2016), 340-372.  doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[27]

Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal., 15 (2014), 118-139.  doi: 10.1016/j.nonrwa.2013.06.005.  Google Scholar

[28]

X-Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[29]

X-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808.  doi: 10.1007/s00285-011-0482-9.  Google Scholar

show all references

References:
[1]

C-M. BraunerD. JollyL. Lorenzi and P. Thiebaut, Heterogeneous viral environment in an HIV spatial model, Disc. Cont. Dyn. Syst. Ser. B., 15 (2011), 545-572.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[2]

K. Deimling, Nonlinear Functional Analysis, Berlin: Springer-Verlag, 1988. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, New York, 1993.  Google Scholar

[4]

M. LewisJ. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23.  doi: 10.1007/s11538-005-9018-z.  Google Scholar

[5]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[6]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[7]

P. Magal and X-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[8]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[9]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal., 25 (2015), 64-78.  doi: 10.1016/j.nonrwa.2015.03.002.  Google Scholar

[10]

A. MuraseT. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.  doi: 10.1007/s00285-005-0321-y.  Google Scholar

[11]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.   Google Scholar

[12]

A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biology, 11 (2013), 96. Google Scholar

[13]

H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Providence (RI): American Mathematical Society Providence, 41 (1995), 174.  Google Scholar

[14]

H. L. Smith and X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[15]

H. ShuL. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.  doi: 10.1137/120896463.  Google Scholar

[16]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[17]

F- B WangY. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329.  doi: 10.1080/00036811.2014.955797.  Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78-95.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

[19]

W. Wang and X-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[20]

W. Wang and X-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.  doi: 10.1137/140981769.  Google Scholar

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[22]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theoretical Biology, 257 (2009), 499-509.  doi: 10.1016/j.jtbi.2009.01.001.  Google Scholar

[23]

H. Yang and J. Wei, Global behaviours of an in-host viral model with general incidence terms, Appl. Anal., 97 (2018), 2431-2449.  doi: 10.1080/00036811.2017.1376246.  Google Scholar

[24]

H. Yang and J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Disc. Cont. Dyn. Syst. Ser. B., 20 (2015), 1573-1582.  doi: 10.3934/dcdsb.2015.20.1573.  Google Scholar

[25]

H. Yang and J. Wei, Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response, Nonlinear Dynam., 82 (2015), 713-722.  doi: 10.1007/s11071-015-2189-8.  Google Scholar

[26]

X. Yu and X-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Diff. Equ., 261 (2016), 340-372.  doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[27]

Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal., 15 (2014), 118-139.  doi: 10.1016/j.nonrwa.2013.06.005.  Google Scholar

[28]

X-Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[29]

X-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808.  doi: 10.1007/s00285-011-0482-9.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (206)
  • HTML views (196)
  • Cited by (1)

Other articles
by authors

[Back to Top]