January  2020, 19(1): 85-102. doi: 10.3934/cpaa.2020005

Dynamics of spatially heterogeneous viral model with time delay

1. 

School of Science, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China

2. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

3. 

School of Science, Jimei University, Xiamen, Fujian, 361021, China

* Corresponding author

Received  August 2018 Revised  January 2019 Published  July 2019

Fund Project: Hong Yang is supported by China-DSTF grant zd-2016-091, Junjie Wei is supported by China-NNSF grant 11771109

A delayed reaction-diffusion virus model with a general incidence function and spatially dependent parameters is investigated. The basic reproduction number for the model is derived, and the uniform persistence of solutions and global attractively of the equilibria are proved. We also show the global attractivity of the positive equilibria via constructing Lyapunov functional, in case that all the parameters are spatially independent. Numerical simulations are finally conducted to illustrate these analytical results.

Citation: Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005
References:
[1]

C-M. BraunerD. JollyL. Lorenzi and P. Thiebaut, Heterogeneous viral environment in an HIV spatial model, Disc. Cont. Dyn. Syst. Ser. B., 15 (2011), 545-572. doi: 10.3934/dcdsb.2011.15.545. Google Scholar

[2]

K. Deimling, Nonlinear Functional Analysis, Berlin: Springer-Verlag, 1988. doi: 10.1007/978-3-662-00547-7. Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, New York, 1993. Google Scholar

[4]

M. LewisJ. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23. doi: 10.1007/s11538-005-9018-z. Google Scholar

[5]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505. doi: 10.1007/s11538-010-9503-x. Google Scholar

[6]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8. Google Scholar

[7]

P. Magal and X-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173. Google Scholar

[8]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590. Google Scholar

[9]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.03.002. Google Scholar

[10]

A. MuraseT. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267. doi: 10.1007/s00285-005-0321-y. Google Scholar

[11]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. Google Scholar

[12]

A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biology, 11 (2013), 96.Google Scholar

[13]

H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Providence (RI): American Mathematical Society Providence, 41 (1995), 174. Google Scholar

[14]

H. L. Smith and X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[15]

H. ShuL. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302. doi: 10.1137/120896463. Google Scholar

[16]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870. Google Scholar

[17]

F- B WangY. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329. doi: 10.1080/00036811.2014.955797. Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78-95. doi: 10.1016/j.mbs.2007.05.004. Google Scholar

[19]

W. Wang and X-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[20]

W. Wang and X-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170. doi: 10.1137/140981769. Google Scholar

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1. Google Scholar

[22]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theoretical Biology, 257 (2009), 499-509. doi: 10.1016/j.jtbi.2009.01.001. Google Scholar

[23]

H. Yang and J. Wei, Global behaviours of an in-host viral model with general incidence terms, Appl. Anal., 97 (2018), 2431-2449. doi: 10.1080/00036811.2017.1376246. Google Scholar

[24]

H. Yang and J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Disc. Cont. Dyn. Syst. Ser. B., 20 (2015), 1573-1582. doi: 10.3934/dcdsb.2015.20.1573. Google Scholar

[25]

H. Yang and J. Wei, Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response, Nonlinear Dynam., 82 (2015), 713-722. doi: 10.1007/s11071-015-2189-8. Google Scholar

[26]

X. Yu and X-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Diff. Equ., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014. Google Scholar

[27]

Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal., 15 (2014), 118-139. doi: 10.1016/j.nonrwa.2013.06.005. Google Scholar

[28]

X-Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar

[29]

X-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808. doi: 10.1007/s00285-011-0482-9. Google Scholar

show all references

References:
[1]

C-M. BraunerD. JollyL. Lorenzi and P. Thiebaut, Heterogeneous viral environment in an HIV spatial model, Disc. Cont. Dyn. Syst. Ser. B., 15 (2011), 545-572. doi: 10.3934/dcdsb.2011.15.545. Google Scholar

[2]

K. Deimling, Nonlinear Functional Analysis, Berlin: Springer-Verlag, 1988. doi: 10.1007/978-3-662-00547-7. Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, New York, 1993. Google Scholar

[4]

M. LewisJ. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol., 68 (2006), 3-23. doi: 10.1007/s11538-005-9018-z. Google Scholar

[5]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505. doi: 10.1007/s11538-010-9503-x. Google Scholar

[6]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8. Google Scholar

[7]

P. Magal and X-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173. Google Scholar

[8]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.2307/2001590. Google Scholar

[9]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.03.002. Google Scholar

[10]

A. MuraseT. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267. doi: 10.1007/s00285-005-0321-y. Google Scholar

[11]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. Google Scholar

[12]

A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biology, 11 (2013), 96.Google Scholar

[13]

H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Providence (RI): American Mathematical Society Providence, 41 (1995), 174. Google Scholar

[14]

H. L. Smith and X-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[15]

H. ShuL. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302. doi: 10.1137/120896463. Google Scholar

[16]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870. Google Scholar

[17]

F- B WangY. Huang and X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312-2329. doi: 10.1080/00036811.2014.955797. Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78-95. doi: 10.1016/j.mbs.2007.05.004. Google Scholar

[19]

W. Wang and X-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[20]

W. Wang and X-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170. doi: 10.1137/140981769. Google Scholar

[21]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1. Google Scholar

[22]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theoretical Biology, 257 (2009), 499-509. doi: 10.1016/j.jtbi.2009.01.001. Google Scholar

[23]

H. Yang and J. Wei, Global behaviours of an in-host viral model with general incidence terms, Appl. Anal., 97 (2018), 2431-2449. doi: 10.1080/00036811.2017.1376246. Google Scholar

[24]

H. Yang and J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Disc. Cont. Dyn. Syst. Ser. B., 20 (2015), 1573-1582. doi: 10.3934/dcdsb.2015.20.1573. Google Scholar

[25]

H. Yang and J. Wei, Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response, Nonlinear Dynam., 82 (2015), 713-722. doi: 10.1007/s11071-015-2189-8. Google Scholar

[26]

X. Yu and X-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Diff. Equ., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014. Google Scholar

[27]

Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Anal., 15 (2014), 118-139. doi: 10.1016/j.nonrwa.2013.06.005. Google Scholar

[28]

X-Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar

[29]

X-Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme disease, J. Math. Biol., 65 (2012), 787-808. doi: 10.1007/s00285-011-0482-9. Google Scholar

[1]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[2]

Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277

[3]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[4]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[5]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[6]

Hong Yang, Junjie Wei. Global behaviour of a delayed viral kinetic model with general incidence rate. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1573-1582. doi: 10.3934/dcdsb.2015.20.1573

[7]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[8]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[9]

M. R. S. Kulenović, Orlando Merino. A global attractivity result for maps with invariant boxes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 97-110. doi: 10.3934/dcdsb.2006.6.97

[10]

Dobromir T. Dimitrov, Aaron A. King. Modeling evolution and persistence of neurological viral diseases in wild populations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 729-741. doi: 10.3934/mbe.2008.5.729

[11]

Evan Milliken, Sergei S. Pilyugin. A model of infectious salmon anemia virus with viral diffusion between wild and farmed patches. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1869-1893. doi: 10.3934/dcdsb.2016027

[12]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[13]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[14]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[15]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[16]

Shaoli Wang, Jianhong Wu, Libin Rong. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences & Engineering, 2017, 14 (3) : 805-820. doi: 10.3934/mbe.2017044

[17]

Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861

[18]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[19]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[20]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (80)
  • HTML views (146)
  • Cited by (0)

Other articles
by authors

[Back to Top]