January  2020, 19(1): 145-174. doi: 10.3934/cpaa.2020009

Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  October 2018 Revised  January 2019 Published  July 2019

Fund Project: This work was supported by the National Natural Science Foundations of China No. 11431008 and No. 11871041.

We show the existence and $ C^{k, \gamma} $ smoothness of local integral manifolds at an equilibrium point for nonautonomous and ill-posed equations with sectorially dichotomous operator, provided that the nonlinearities are $ C^{k, \gamma} $ smooth with respect to the state variable. $ C^{k, \gamma} $ local unstable integral manifold follows from $ C^{k, \gamma} $ local stable integral manifold by reversing time variable directly. As an application, an elliptic PDE in infinite cylindrical domain is discussed.

Citation: Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009
References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2$^{nd}$ edition, Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

A. CalsinaX. Mora and J. Solá-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limits, J. Differential Equations, 102 (1993), 244-304.  doi: 10.1006/jdeq.1993.1030.  Google Scholar

[3]

S.-N. Chow and K. Lu, $C^{k}$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 303-320.  doi: 10.1017/S0308210500014682.  Google Scholar

[4]

L. W. Deng and D. M. Xiao, Dichotomous solutions for semilinear ill-posed equations with sectorially dichotomous operator, J. Differential Equations, 267 (2019), 1201-1246.  doi: 10.1016/j.jde.2019.02.006.  Google Scholar

[5]

M. S. ElBialy, Locally Lipschitz perturbations of bi-semigroup, Commun. Pure Appl. Anal., 9 (2010), 327-349.  doi: 10.3934/cpaa.2010.9.327.  Google Scholar

[6]

M. S. ElBialy, Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., 262 (2012), 2516-2560.  doi: 10.1016/j.jfa.2011.11.031.  Google Scholar

[7]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[8]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Math., Vol.841, Springer, Berlin, 1981. doi: 10.1007/BFb0089606.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol.840, Springer, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[10]

K. Kirchgassner, Wave solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127.  doi: 10.1016/0022-0396(82)90058-4.  Google Scholar

[11]

O. E. Lanford, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Lecture Notes in Mathematics, 322 (1973), 159–192. doi: 10.1007/BFb0060566.  Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[13]

R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415.  doi: 10.1007/s10884-009-9140-y.  Google Scholar

[14]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dynam. Systems, 5 (1999), 233-268.  doi: 10.3934/dcds.1999.5.233.  Google Scholar

[15]

A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations, 65 (1986), 68-88.  doi: 10.1016/0022-0396(86)90042-2.  Google Scholar

[16]

A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66.  doi: 10.1002/mma.1670100105.  Google Scholar

[17]

A. Mielke, Normal hyperbolicity of center manifolds and Saint-Venant's principle, Arch. Rational Mech. Anal., 110 (1988), 353-372.  doi: 10.1007/BF00393272.  Google Scholar

[18]

A. Mielke, On nonlinear problems of mixed type: A qualitative theory using infinite-dimensional center manifolds, J. Dynam. Differential Equations, 4 (1992), 419-443.  doi: 10.1007/BF01053805.  Google Scholar

[19]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355.  doi: 10.1006/jdeq.1994.1070.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. C. Robinson, Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge texts in Applied Mathematics, Cambridge University press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[22]

K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Math. Soc. Lect. Notes Ser., vol.2233, Cambridge University Press, 1995. doi: 10.1017/CBO9780511662362.  Google Scholar

[23]

C. Tretter and C. Wyss, Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations, J. Evol. Equ., 14 (2014), 121-153.  doi: 10.1007/s00028-013-0210-6.  Google Scholar

[24]

A. Zamboni, Maximal regularity for evolution problems on the line, Differential Integral Equations, 22 (2009), 519-542.   Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2$^{nd}$ edition, Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

A. CalsinaX. Mora and J. Solá-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limits, J. Differential Equations, 102 (1993), 244-304.  doi: 10.1006/jdeq.1993.1030.  Google Scholar

[3]

S.-N. Chow and K. Lu, $C^{k}$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 303-320.  doi: 10.1017/S0308210500014682.  Google Scholar

[4]

L. W. Deng and D. M. Xiao, Dichotomous solutions for semilinear ill-posed equations with sectorially dichotomous operator, J. Differential Equations, 267 (2019), 1201-1246.  doi: 10.1016/j.jde.2019.02.006.  Google Scholar

[5]

M. S. ElBialy, Locally Lipschitz perturbations of bi-semigroup, Commun. Pure Appl. Anal., 9 (2010), 327-349.  doi: 10.3934/cpaa.2010.9.327.  Google Scholar

[6]

M. S. ElBialy, Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., 262 (2012), 2516-2560.  doi: 10.1016/j.jfa.2011.11.031.  Google Scholar

[7]

K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. doi: 10.1007/b97696.  Google Scholar

[8]

A. Haraux, Nonlinear Evolution Equations-Global Behavior of Solutions, Lecture Notes in Math., Vol.841, Springer, Berlin, 1981. doi: 10.1007/BFb0089606.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol.840, Springer, Berlin, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[10]

K. Kirchgassner, Wave solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127.  doi: 10.1016/0022-0396(82)90058-4.  Google Scholar

[11]

O. E. Lanford, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Lecture Notes in Mathematics, 322 (1973), 159–192. doi: 10.1007/BFb0060566.  Google Scholar

[12]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[13]

R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415.  doi: 10.1007/s10884-009-9140-y.  Google Scholar

[14]

Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dynam. Systems, 5 (1999), 233-268.  doi: 10.3934/dcds.1999.5.233.  Google Scholar

[15]

A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations, 65 (1986), 68-88.  doi: 10.1016/0022-0396(86)90042-2.  Google Scholar

[16]

A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66.  doi: 10.1002/mma.1670100105.  Google Scholar

[17]

A. Mielke, Normal hyperbolicity of center manifolds and Saint-Venant's principle, Arch. Rational Mech. Anal., 110 (1988), 353-372.  doi: 10.1007/BF00393272.  Google Scholar

[18]

A. Mielke, On nonlinear problems of mixed type: A qualitative theory using infinite-dimensional center manifolds, J. Dynam. Differential Equations, 4 (1992), 419-443.  doi: 10.1007/BF01053805.  Google Scholar

[19]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355.  doi: 10.1006/jdeq.1994.1070.  Google Scholar

[20]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. C. Robinson, Infinite-Dimensional Dynamical System: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge texts in Applied Mathematics, Cambridge University press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[22]

K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Math. Soc. Lect. Notes Ser., vol.2233, Cambridge University Press, 1995. doi: 10.1017/CBO9780511662362.  Google Scholar

[23]

C. Tretter and C. Wyss, Dichotomous Hamiltonians with unbounded entries and solutions of Riccati equations, J. Evol. Equ., 14 (2014), 121-153.  doi: 10.1007/s00028-013-0210-6.  Google Scholar

[24]

A. Zamboni, Maximal regularity for evolution problems on the line, Differential Integral Equations, 22 (2009), 519-542.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[8]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[13]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (97)
  • HTML views (177)
  • Cited by (0)

Other articles
by authors

[Back to Top]