January  2020, 19(1): 253-277. doi: 10.3934/cpaa.2020014

Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system

1. 

School of Science, Chang'an University, Xi'an, Shaanxi 710064, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, China

* Corresponding author

Received  November 2018 Revised  April 2019 Published  July 2019

The existence, non-existence and qualitative properties of time periodic pyramidal traveling front solutions for the time periodic Lotka-Volterra competition-diffusion system have already been studied in $ \Bbb{R}^{N} $ with $ N\geq 3 $. In this paper, we continue to study the uniqueness and asymptotic stability of such time-periodic pyramidal traveling front in the three-dimensional whole space. For any given admissible pyramid, we show that the time periodic pyramidal traveling front is uniquely determined and it is asymptotically stable under the condition that given perturbations decay at infinity. Moreover, the time periodic pyramidal traveling front is uniquely determined as a combination of two-dimensional periodic V-form waves on the edges of the pyramid.

Citation: Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure & Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014
References:
[1]

X. Bao, Time periodic traveling fronts of pyramidal shapes for periodic Lotka-Volterra competition-diffusion system, Nonlinear Anal. Real World Appl., 35 (2017), 292–311. doi: 10.1016/j.nonrwa.2018.04.009. Google Scholar

[2]

X. Bao and Z.C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402–2435. doi: 10.1016/j.jde.2013.06.024. Google Scholar

[3]

X. Bao, W.T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590–8637. doi: 10.1016/j.jde.2016.02.032. Google Scholar

[4]

X. Bao, W. Shen and Z. Shen, Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems, Commun. Pure Appl. Anal., 18 (2019), 361–396. doi: 10.3934/cpaa.2019019. Google Scholar

[5]

Z. H. Bu and Z. C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139–160. doi: 10.3934/cpaa.2016.15.139. Google Scholar

[6]

Z. H. Bu and Z. C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations I, Discrete Contin. Dyn. Syst., 37 (2017), 2395–2430. doi: 10.3934/dcds.2017104. Google Scholar

[7]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80–118. doi: 10.1137/S0036141097316391. Google Scholar

[8]

P. K. Brazhnik and J. J. Tyson, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (2000), 371–391. doi: 10.1137/S0036139997325497. Google Scholar

[9]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237–279. doi: 10.1016/j.jde.2007.01.021. Google Scholar

[10]

X. Chen, J. S. Chen, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable nonlinearity, Ann. Inst. H. Poincare Annal. Lineaire, 24 (2007), 369–393. doi: 10.1016/j.anihpc.2006.03.012. Google Scholar

[11]

M. El Smaily, F. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Analysis TMA, 74 (2011), 6469–6486. doi: 10.1016/j.na.2011.06.030. Google Scholar

[12]

J. Fang and X. Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. European Math. Soc., 17 (2015), 2243–2288. doi: 10.4171/JEMS/556. Google Scholar

[13]

S. A. Gardner, Existence and stability of traveling wave solutions of a competition model. A degree theoretical approach, J. Differential Equations, 44 (1982), 343–364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[14]

C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn equation in ${{\mathbb{R}}^{2}}$, Arch. Rational Mech. Anal., 203 (2012), 1037–1065. doi: 10.1016/j.jde.2012.03.004. Google Scholar

[15]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in ${{\mathbb{R}}^{^{N}}}$ with conical-shaped level sets, Comm. Partial Differential Equations, 25 (2000), 769–819. doi: 10.1080/03605300008821532. Google Scholar

[16]

F. Hamel, R. Monneau and J. M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Ecole Norm. Sup., 37 (2004), 469–506. doi: 10.1016/j.ansens.2004.03.001. Google Scholar

[17]

F. Hamel, R. Monneau and J. M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069–1096. doi: 10.3934/dcds.2005.13.1069. Google Scholar

[18]

F. Hamel, R. Monneau and J. M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75–92. doi: 10.3934/dcds.2006.14.75. Google Scholar

[19]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ${{\mathbb{R}}^{^{N}}}$, Arch. Ration. Mech. Anal., 157 (2001), 91–163. doi: 10.1007/PL00004238. Google Scholar

[20]

F. Hamel and J. M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 101–123. doi: 10.3934/dcdss.2011.4.101. Google Scholar

[21]

P. Hess, Periodic-parabolic boundary value problems and positively, Pitmal Research Notes in Mathematic Series, Vol 247, Longman Scientific and Technical, Wiley, Harlow, Essex, 1991. Google Scholar

[22]

Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan. J. Indust. Appl. Math., 13 (1996), 343–349. doi: 10.1007/BF03167252. Google Scholar

[23]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031–1054. doi: 10.1017/S0308210510001253. Google Scholar

[24]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302. Google Scholar

[25]

Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalyttc chemiacal reaction systems, SIAM J. Math. Anal., 44 (2012), 1474–1521. doi: 10.1137/100814974. Google Scholar

[26]

G. Lv and M. Wang, Stability of planar waves in mono-stable reaction-diffusion equations, Proc. Amer. Math. Soc., 139 (2011), 3611–3621. doi: 10.1090/S0002-9939-2011-10767-6. Google Scholar

[27]

G. Lv and M. Wang, Stability of planar waves in reaction-diffusion system, Sci. China Math., 548 (2011), 1403–1419. doi: 10.1007/s11425-011-4210-0. Google Scholar

[28]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217–2240. doi: 10.1137/080723715. Google Scholar

[29]

W. M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379–395. doi: 10.3934/nhm.2013.8.379. Google Scholar

[30]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204–233. doi: 10.1016/j.jde.2004.06.011. Google Scholar

[31]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819–832. doi: 10.3934/dcds.2006.15.819. Google Scholar

[32]

W. J. Sheng, Time periodic traveling curved fronts of bistable reaction-diffusion equations in ${{\mathbb{R}}^{^{N}}}$, Appl. Math. Letters, 54 (2016), 22–30. doi: 10.1016/j.aml.2015.11.004. Google Scholar

[33]

W. J. Sheng, Time periodic traveling curved fronts of bistable reaction-diffusion equations in ${{\mathbb{R}}^{^{3}}}$, Annali di Matematica Pura ed Applicata., 196 (2017), 617–639. doi: 10.1007/s10231-016-0589-0. Google Scholar

[34]

W. J. Sheng, W. T. Li and Z. C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388–2424. doi: 10.1016/j.jde.2011.09.016. Google Scholar

[35]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319–344. doi: 10.1137/060661788. Google Scholar

[36]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103–2130. doi: 10.1016/j.jde.2008.06.037. Google Scholar

[37]

M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011–1046. doi: 10.3934/dcds.2012.32.1011. Google Scholar

[38]

M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal. 47 (2015) 455–476. doi: 10.1137/130945041. Google Scholar

[39]

M. Taniguchi, Convex compact sets in ${{\mathbb{R}}^{^{N-1}}}$ give traveling fronts of cooperative-diffusion system in ${{\mathbb{R}}^{^{N}}}$, J. Differential Equations, 260 (2016), 4301–4338. doi: 10.1016/j.jde.2015.11.010. Google Scholar

[40]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic System, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. Procidence, RI, 1994. Google Scholar

[41]

Z. C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst. 32 (2012), 2339–2374. doi: 10.3934/dcds.2012.32.2339. Google Scholar

[42]

Z. C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1053–1090. doi: 10.1017/S0308210515000268. Google Scholar

[43]

Z. C. Wang and Z. H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 260 (2016), 6405–6450. doi: 10.1016/j.jde.2015.12.045. Google Scholar

[44]

Z. C. Wang, W. T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in bistable reaction-diffusion systems, Sci. China Math., 59 (2016), 1869–1908. doi: 10.1007/s11425-016-0015-x. Google Scholar

[45]

Z. C. Wang, H. L. Niu and S. Ruan, On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ${{\mathbb{R}}^{^{3}}}$, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1111–1144. doi: 10.3934/dcdsb.2017055. Google Scholar

[46]

Z. C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196–3229. doi: 10.1016/j.jde.2011.01.017. Google Scholar

[47]

Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123–1139. doi: 10.3934/dcds.2008.20.1123. Google Scholar

[48]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627–671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

show all references

References:
[1]

X. Bao, Time periodic traveling fronts of pyramidal shapes for periodic Lotka-Volterra competition-diffusion system, Nonlinear Anal. Real World Appl., 35 (2017), 292–311. doi: 10.1016/j.nonrwa.2018.04.009. Google Scholar

[2]

X. Bao and Z.C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402–2435. doi: 10.1016/j.jde.2013.06.024. Google Scholar

[3]

X. Bao, W.T. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590–8637. doi: 10.1016/j.jde.2016.02.032. Google Scholar

[4]

X. Bao, W. Shen and Z. Shen, Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems, Commun. Pure Appl. Anal., 18 (2019), 361–396. doi: 10.3934/cpaa.2019019. Google Scholar

[5]

Z. H. Bu and Z. C. Wang, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016), 139–160. doi: 10.3934/cpaa.2016.15.139. Google Scholar

[6]

Z. H. Bu and Z. C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations I, Discrete Contin. Dyn. Syst., 37 (2017), 2395–2430. doi: 10.3934/dcds.2017104. Google Scholar

[7]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80–118. doi: 10.1137/S0036141097316391. Google Scholar

[8]

P. K. Brazhnik and J. J. Tyson, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math., 60 (2000), 371–391. doi: 10.1137/S0036139997325497. Google Scholar

[9]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation, J. Differential Equations, 236 (2007), 237–279. doi: 10.1016/j.jde.2007.01.021. Google Scholar

[10]

X. Chen, J. S. Chen, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable nonlinearity, Ann. Inst. H. Poincare Annal. Lineaire, 24 (2007), 369–393. doi: 10.1016/j.anihpc.2006.03.012. Google Scholar

[11]

M. El Smaily, F. Hamel and R. Huang, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Analysis TMA, 74 (2011), 6469–6486. doi: 10.1016/j.na.2011.06.030. Google Scholar

[12]

J. Fang and X. Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. European Math. Soc., 17 (2015), 2243–2288. doi: 10.4171/JEMS/556. Google Scholar

[13]

S. A. Gardner, Existence and stability of traveling wave solutions of a competition model. A degree theoretical approach, J. Differential Equations, 44 (1982), 343–364. doi: 10.1016/0022-0396(82)90001-8. Google Scholar

[14]

C. Gui, Symmetry of traveling wave solutions to the Allen-Cahn equation in ${{\mathbb{R}}^{2}}$, Arch. Rational Mech. Anal., 203 (2012), 1037–1065. doi: 10.1016/j.jde.2012.03.004. Google Scholar

[15]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in ${{\mathbb{R}}^{^{N}}}$ with conical-shaped level sets, Comm. Partial Differential Equations, 25 (2000), 769–819. doi: 10.1080/03605300008821532. Google Scholar

[16]

F. Hamel, R. Monneau and J. M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. Ecole Norm. Sup., 37 (2004), 469–506. doi: 10.1016/j.ansens.2004.03.001. Google Scholar

[17]

F. Hamel, R. Monneau and J. M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069–1096. doi: 10.3934/dcds.2005.13.1069. Google Scholar

[18]

F. Hamel, R. Monneau and J. M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75–92. doi: 10.3934/dcds.2006.14.75. Google Scholar

[19]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in ${{\mathbb{R}}^{^{N}}}$, Arch. Ration. Mech. Anal., 157 (2001), 91–163. doi: 10.1007/PL00004238. Google Scholar

[20]

F. Hamel and J. M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 101–123. doi: 10.3934/dcdss.2011.4.101. Google Scholar

[21]

P. Hess, Periodic-parabolic boundary value problems and positively, Pitmal Research Notes in Mathematic Series, Vol 247, Longman Scientific and Technical, Wiley, Harlow, Essex, 1991. Google Scholar

[22]

Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan. J. Indust. Appl. Math., 13 (1996), 343–349. doi: 10.1007/BF03167252. Google Scholar

[23]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031–1054. doi: 10.1017/S0308210510001253. Google Scholar

[24]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302. Google Scholar

[25]

Y. Li and Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalyttc chemiacal reaction systems, SIAM J. Math. Anal., 44 (2012), 1474–1521. doi: 10.1137/100814974. Google Scholar

[26]

G. Lv and M. Wang, Stability of planar waves in mono-stable reaction-diffusion equations, Proc. Amer. Math. Soc., 139 (2011), 3611–3621. doi: 10.1090/S0002-9939-2011-10767-6. Google Scholar

[27]

G. Lv and M. Wang, Stability of planar waves in reaction-diffusion system, Sci. China Math., 548 (2011), 1403–1419. doi: 10.1007/s11425-011-4210-0. Google Scholar

[28]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217–2240. doi: 10.1137/080723715. Google Scholar

[29]

W. M. Ni and M. Taniguchi, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013), 379–395. doi: 10.3934/nhm.2013.8.379. Google Scholar

[30]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204–233. doi: 10.1016/j.jde.2004.06.011. Google Scholar

[31]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819–832. doi: 10.3934/dcds.2006.15.819. Google Scholar

[32]

W. J. Sheng, Time periodic traveling curved fronts of bistable reaction-diffusion equations in ${{\mathbb{R}}^{^{N}}}$, Appl. Math. Letters, 54 (2016), 22–30. doi: 10.1016/j.aml.2015.11.004. Google Scholar

[33]

W. J. Sheng, Time periodic traveling curved fronts of bistable reaction-diffusion equations in ${{\mathbb{R}}^{^{3}}}$, Annali di Matematica Pura ed Applicata., 196 (2017), 617–639. doi: 10.1007/s10231-016-0589-0. Google Scholar

[34]

W. J. Sheng, W. T. Li and Z. C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012), 2388–2424. doi: 10.1016/j.jde.2011.09.016. Google Scholar

[35]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319–344. doi: 10.1137/060661788. Google Scholar

[36]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103–2130. doi: 10.1016/j.jde.2008.06.037. Google Scholar

[37]

M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011–1046. doi: 10.3934/dcds.2012.32.1011. Google Scholar

[38]

M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal. 47 (2015) 455–476. doi: 10.1137/130945041. Google Scholar

[39]

M. Taniguchi, Convex compact sets in ${{\mathbb{R}}^{^{N-1}}}$ give traveling fronts of cooperative-diffusion system in ${{\mathbb{R}}^{^{N}}}$, J. Differential Equations, 260 (2016), 4301–4338. doi: 10.1016/j.jde.2015.11.010. Google Scholar

[40]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic System, Translations of Mathematical Monographs, Vol. 140, Amer. Math. Soc. Procidence, RI, 1994. Google Scholar

[41]

Z. C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst. 32 (2012), 2339–2374. doi: 10.3934/dcds.2012.32.2339. Google Scholar

[42]

Z. C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1053–1090. doi: 10.1017/S0308210515000268. Google Scholar

[43]

Z. C. Wang and Z. H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differential Equations, 260 (2016), 6405–6450. doi: 10.1016/j.jde.2015.12.045. Google Scholar

[44]

Z. C. Wang, W. T. Li and S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in bistable reaction-diffusion systems, Sci. China Math., 59 (2016), 1869–1908. doi: 10.1007/s11425-016-0015-x. Google Scholar

[45]

Z. C. Wang, H. L. Niu and S. Ruan, On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ${{\mathbb{R}}^{^{3}}}$, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1111–1144. doi: 10.3934/dcdsb.2017055. Google Scholar

[46]

Z. C. Wang and J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011), 3196–3229. doi: 10.1016/j.jde.2011.01.017. Google Scholar

[47]

Y. Wu and X. Xing, Stability of traveling waves with critical speeds for p-degree Fisher-type equations, Discrete Contin. Dyn. Syst., 20 (2008), 1123–1139. doi: 10.3934/dcds.2008.20.1123. Google Scholar

[48]

G. Zhao and S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011), 627–671. doi: 10.1016/j.matpur.2010.11.005. Google Scholar

[1]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[2]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[3]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[4]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[5]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[6]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[7]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[8]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[9]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[10]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[11]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[12]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[13]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[14]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[15]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[16]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[17]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[18]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[19]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[20]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (50)
  • HTML views (143)
  • Cited by (0)

Other articles
by authors

[Back to Top]