January  2020, 19(1): 311-328. doi: 10.3934/cpaa.2020017

Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

* Corresponding author

Received  December 2018 Revised  March 2019 Published  July 2019

Fund Project: The first author is supported by NSFC (11571040, 11671331)

This paper is devoted to study the following systems of coupled elliptic equations with quadratic nonlinearity
$ \begin{equation*} \begin{cases} -\varepsilon^{2}\Delta v+P(x)v = \mu vw, &x\in{\mathbb{R}}^{N},\\ -\varepsilon^{2}\Delta w+Q(x)w = \frac{\mu}{2} v^{2}+\gamma w^{2}, &x\in{\mathbb{R}}^{N}, \end{cases} \end{equation*} $
which arises from second- harmonic generation in quadratic optical media. We assume that the potential functions
$ P(x) $
and
$ Q(x) $
are positive functions and have a strict local maxima at
$ x_{0} $
. Applying the finite dimensional reduction method, for any integer
$ 1\leq k\leq N+1 $
, we prove the existence of positive solutions which have
$ k $
local maximum points that concentrate at
$ x_{0} $
simultaneously when
$ \varepsilon $
is small.
Citation: Zhongwei Tang, Huafei Xie. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (1) : 311-328. doi: 10.3934/cpaa.2020017
References:
[1]

A. AmbrosettiM. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300. doi: 10.1007/s002050050067. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020. Google Scholar

[4]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007), 85-112. doi: 10.1007/s00526-006-0079-0. Google Scholar

[5]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y. Google Scholar

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412. doi: 10.1016/0375-9601(94)00989-3. Google Scholar

[7]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. Google Scholar

[8]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235. doi: 10.1016/S0370-1573(02)00196-5. Google Scholar

[9]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations, 19 (2006), 200-207. Google Scholar

[10]

T. BartschZ. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6. Google Scholar

[11]

T. Cazenave, Semilinear Schrödinger Equations, vol.10 of Courant Lecture Notes in Mathematics, New York University Courant Insitute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010. Google Scholar

[12]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple "peaks" for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 235-264. doi: 10.1017/S030821050002134X. Google Scholar

[13]

M. ContiS. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888. doi: 10.1016/S0294-1449(02)00104-X. Google Scholar

[14]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[15]

E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262. doi: 10.2140/pjm.1999.189.241. Google Scholar

[16]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. doi: 10.1016/j.anihpc.2010.01.009. Google Scholar

[17]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27. doi: 10.1016/S0022-0396(99)80016-3. Google Scholar

[18]

C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52 (2000), 522-538. doi: 10.4153/CJM-2000-024-x. Google Scholar

[19]

Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980. Google Scholar

[20]

Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q. Google Scholar

[21]

C. LinW. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. Google Scholar

[22]

Z. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193. doi: 10.1515/ans-2010-0109. Google Scholar

[23]

E. MontefuscoB. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 47-71. doi: 10.4171/JEMS/103. Google Scholar

[24]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. doi: 10.1002/cpa.20309. Google Scholar

[25]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227. doi: 10.1112/S002461070000898X. Google Scholar

[26]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. Google Scholar

[27]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbb{R}^{N}$, Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x. Google Scholar

[28]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, vol.39 of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Google Scholar

[29]

R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. Google Scholar

[30]

J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106. doi: 10.1007/s00205-008-0121-9. Google Scholar

[31]

C. Wang and J. Zhou, Infinitely many solitary waves due to the second-harmonic generation in quadratic media, bo be appeared in Acta Math. Sci. Ser. B (Engl. Ed.) (2020, no.1).Google Scholar

[32]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137. doi: 10.1006/jdeq.2000.3922. Google Scholar

[33]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to second-harmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52. doi: 10.1007/s003329900063. Google Scholar

[34]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691. doi: 10.1007/s00526-015-0879-1. Google Scholar

show all references

References:
[1]

A. AmbrosettiM. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300. doi: 10.1007/s002050050067. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020. Google Scholar

[4]

A. AmbrosettiE. Colorado and D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007), 85-112. doi: 10.1007/s00526-006-0079-0. Google Scholar

[5]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y. Google Scholar

[6]

A. V. Buryak and Y. S. Kivshar, Solitons due to second harmonic generation, Phys. Lett. A, 197 (1995), 407-412. doi: 10.1016/0375-9601(94)00989-3. Google Scholar

[7]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. Google Scholar

[8]

A. V. BuryakP. Di TrapaniD. V. Skryabin and S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63-235. doi: 10.1016/S0370-1573(02)00196-5. Google Scholar

[9]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations, 19 (2006), 200-207. Google Scholar

[10]

T. BartschZ. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6. Google Scholar

[11]

T. Cazenave, Semilinear Schrödinger Equations, vol.10 of Courant Lecture Notes in Mathematics, New York University Courant Insitute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010. Google Scholar

[12]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple "peaks" for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 235-264. doi: 10.1017/S030821050002134X. Google Scholar

[13]

M. ContiS. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888. doi: 10.1016/S0294-1449(02)00104-X. Google Scholar

[14]

M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[15]

E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math., 189 (1999), 241-262. doi: 10.2140/pjm.1999.189.241. Google Scholar

[16]

E. N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. doi: 10.1016/j.anihpc.2010.01.009. Google Scholar

[17]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27. doi: 10.1016/S0022-0396(99)80016-3. Google Scholar

[18]

C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52 (2000), 522-538. doi: 10.4153/CJM-2000-024-x. Google Scholar

[19]

Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2 (1997), 955-980. Google Scholar

[20]

Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q. Google Scholar

[21]

C. LinW. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. Google Scholar

[22]

Z. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193. doi: 10.1515/ans-2010-0109. Google Scholar

[23]

E. MontefuscoB. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 47-71. doi: 10.4171/JEMS/103. Google Scholar

[24]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. doi: 10.1002/cpa.20309. Google Scholar

[25]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000), 213-227. doi: 10.1112/S002461070000898X. Google Scholar

[26]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162. Google Scholar

[27]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbb{R}^{N}$, Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x. Google Scholar

[28]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, vol.39 of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Google Scholar

[29]

R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. Google Scholar

[30]

J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106. doi: 10.1007/s00205-008-0121-9. Google Scholar

[31]

C. Wang and J. Zhou, Infinitely many solitary waves due to the second-harmonic generation in quadratic media, bo be appeared in Acta Math. Sci. Ser. B (Engl. Ed.) (2020, no.1).Google Scholar

[32]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173 (2001), 92-137. doi: 10.1006/jdeq.2000.3922. Google Scholar

[33]

A. C. YewA. R. Champneys and P. J. McKenna, Multiple solitary waves due to second-harmonic generation in quadratic media, J. Nonlinear Sci., 9 (1999), 33-52. doi: 10.1007/s003329900063. Google Scholar

[34]

L. ZhaoF. Zhao and J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54 (2015), 2657-2691. doi: 10.1007/s00526-015-0879-1. Google Scholar

[1]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[2]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[3]

Xiaoling Sun, Xiaojin Zheng, Juan Sun. A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 47-60. doi: 10.3934/jimo.2009.5.47

[4]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

[5]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[6]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[7]

Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016

[8]

Kei Nakamura, Tohru Ozawa. Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 789-801. doi: 10.3934/dcds.2013.33.789

[9]

Jing Zhou, Zhibin Deng. A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019044

[10]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[11]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[12]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[13]

A. Adam Azzam. Scattering for the two dimensional NLS with (full) exponential nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1071-1101. doi: 10.3934/cpaa.2018052

[14]

Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249

[15]

Yang Wang. The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem. Communications on Pure & Applied Analysis, 2011, 10 (2) : 731-744. doi: 10.3934/cpaa.2011.10.731

[16]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[17]

Shuji Machihara. One dimensional Dirac equation with quadratic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 277-290. doi: 10.3934/dcds.2005.13.277

[18]

Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 119-139. doi: 10.3934/dcdss.2017007

[19]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[20]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (52)
  • HTML views (137)
  • Cited by (0)

Other articles
by authors

[Back to Top]