• Previous Article
    Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    The weak maximum principle for second-order elliptic and parabolic conormal derivative problems
January  2020, 19(1): 511-525. doi: 10.3934/cpaa.2020025

Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received  January 2019 Revised  May 2019 Published  July 2019

Fund Project: This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2017.307.

We consider the boundary value problem
$\begin{equation*} \begin{cases} -{\rm div}_G(w_1\nabla_G u) = w_2f(u) &\text{ in } \Omega,\\ u=0 &\text{ on } \partial\Omega, \end{cases}\end{equation*}$
where
$\Omega$
is a bounded or unbounded
$C^1$
domain of
$\mathbb{R}^N$
,
$w_1, w_2 \in L^1_{\rm loc}(\Omega)\setminus\{0\}$
are nonnegative functions,
$f$
is an increasing function,
$\nabla_G$
and
${\rm div}_G$
are Grushin gradient and Grushin divergence, respectively. We prove some Liouville theorems for stable weak solutions of the problem under suitable assumptions on
$\Omega$
,
$w_1$
,
$w_2$
and
$f$
. We also show the sharpness of our results when
$\Omega=\mathbb{R}^N$
and
$f$
has power or exponential growth.
Citation: Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025
References:
[1]

C. T. AnhJ. Lee and B. K. My, On the classification of solutions to an elliptic equation involving the {G}rushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688.  doi: 10.1080/17476933.2017.1332051.

[2]

I. BirindelliI. Capuzzo Dolcetta and A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308.  doi: 10.1016/S0294-1449(97)80138-2.

[3]

I. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Partial Differential Equations, 24 (1999), 1875-1890.  doi: 10.1080/03605309908821485.

[4]

D. CastorinaP. Esposito and B. Sciunzi, Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793.  doi: 10.3934/cpaa.2009.8.1779.

[5]

C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.  doi: 10.1090/S0002-9939-2011-11351-0.

[6]

L. DamascelliA. FarinaB. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119.  doi: 10.1016/j.anihpc.2008.06.001.

[7]

L. D'Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc., 132 (2004), 725-734.  doi: 10.1090/S0002-9939-03-07232-0.

[8]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.

[9]

A. T. Duong and N. T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations, Paper No. 108, 11.

[10]

L. Dupaigne and A. Farina, Stable solutions of $-\Delta u = f(u)$ in $\Bbb R^N$, J. Eur. Math. Soc. (JEMS), 12 (2010), 855-882.  doi: 10.4171/JEMS/217.

[11]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, vol. 143 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802.

[12]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.

[13]

A. Farina, Stable solutions of $-\Delta u = e^u$ on $\Bbb R^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.

[14]

B. FranchiC. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604.  doi: 10.1080/03605309408821025.

[15]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508.

[16]

P. Le, Liouville theorems for stable solutions of p-Laplace equations with convex nonlinearities, J. Math. Anal. Appl., 443 (2016), 431-444.  doi: 10.1016/j.jmaa.2016.05.040.

[17]

P. Le and V. Ho, Stable solutions to weighted quasilinear problems of Lane-Emden type, Electron. J. Differential Equations, Paper No. 71, 11.

[18]

P. Le and V. Ho, Liouville results for stable solutions of quasilinear equations with weights, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 357-368. 

[19]

P. Le, D. H. T. Le and K. A. T. Le, On stable solutions to weighted quasilinear problems of Gelfand type, Mediterr. J. Math., 15 (2018), Art. 94, 12. doi: 10.1007/s00009-018-1143-7.

[20]

P. LeH. T. Nguyen and T. Y. Nguyen, On positive stable solutions to weighted quasilinear problems with negative exponent, Complex Var. Elliptic Equ., 63 (2018), 1739-1751.  doi: 10.1080/17476933.2017.1403429.

[21]

D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc. (JEMS), 12 (2010), 611-654.  doi: 10.4171/JEMS/210.

[22]

B. Rahal, Liouville-type theorems with finite {M}orse index for semilinear $\Delta_\lambda$-Laplace operators, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 21, 19. doi: 10.1007/s00030-018-0512-z.

[23]

C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705-1727.  doi: 10.1016/j.jfa.2011.11.017.

[24]

X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1450050, 12. doi: 10.1142/S0219199714500503.

show all references

References:
[1]

C. T. AnhJ. Lee and B. K. My, On the classification of solutions to an elliptic equation involving the {G}rushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688.  doi: 10.1080/17476933.2017.1332051.

[2]

I. BirindelliI. Capuzzo Dolcetta and A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308.  doi: 10.1016/S0294-1449(97)80138-2.

[3]

I. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Partial Differential Equations, 24 (1999), 1875-1890.  doi: 10.1080/03605309908821485.

[4]

D. CastorinaP. Esposito and B. Sciunzi, Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793.  doi: 10.3934/cpaa.2009.8.1779.

[5]

C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.  doi: 10.1090/S0002-9939-2011-11351-0.

[6]

L. DamascelliA. FarinaB. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119.  doi: 10.1016/j.anihpc.2008.06.001.

[7]

L. D'Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc., 132 (2004), 725-734.  doi: 10.1090/S0002-9939-03-07232-0.

[8]

E. N. DancerY. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.  doi: 10.1016/j.jde.2011.02.005.

[9]

A. T. Duong and N. T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations, Paper No. 108, 11.

[10]

L. Dupaigne and A. Farina, Stable solutions of $-\Delta u = f(u)$ in $\Bbb R^N$, J. Eur. Math. Soc. (JEMS), 12 (2010), 855-882.  doi: 10.4171/JEMS/217.

[11]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, vol. 143 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802.

[12]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.

[13]

A. Farina, Stable solutions of $-\Delta u = e^u$ on $\Bbb R^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.

[14]

B. FranchiC. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604.  doi: 10.1080/03605309408821025.

[15]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.  doi: 10.1007/BF00250508.

[16]

P. Le, Liouville theorems for stable solutions of p-Laplace equations with convex nonlinearities, J. Math. Anal. Appl., 443 (2016), 431-444.  doi: 10.1016/j.jmaa.2016.05.040.

[17]

P. Le and V. Ho, Stable solutions to weighted quasilinear problems of Lane-Emden type, Electron. J. Differential Equations, Paper No. 71, 11.

[18]

P. Le and V. Ho, Liouville results for stable solutions of quasilinear equations with weights, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 357-368. 

[19]

P. Le, D. H. T. Le and K. A. T. Le, On stable solutions to weighted quasilinear problems of Gelfand type, Mediterr. J. Math., 15 (2018), Art. 94, 12. doi: 10.1007/s00009-018-1143-7.

[20]

P. LeH. T. Nguyen and T. Y. Nguyen, On positive stable solutions to weighted quasilinear problems with negative exponent, Complex Var. Elliptic Equ., 63 (2018), 1739-1751.  doi: 10.1080/17476933.2017.1403429.

[21]

D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc. (JEMS), 12 (2010), 611-654.  doi: 10.4171/JEMS/210.

[22]

B. Rahal, Liouville-type theorems with finite {M}orse index for semilinear $\Delta_\lambda$-Laplace operators, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 21, 19. doi: 10.1007/s00030-018-0512-z.

[23]

C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705-1727.  doi: 10.1016/j.jfa.2011.11.017.

[24]

X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1450050, 12. doi: 10.1142/S0219199714500503.

[1]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187

[2]

Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033

[3]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure and Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[4]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[5]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148

[6]

M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004

[7]

Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167

[8]

Alberto Farina, Miguel Angel Navarro. Some Liouville-type results for stable solutions involving the mean curvature operator: The radial case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1233-1256. doi: 10.3934/dcds.2020076

[9]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436

[11]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[12]

Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206

[13]

Linfen Cao, Wenxiong Chen. Liouville type theorems for poly-harmonic Navier problems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3937-3955. doi: 10.3934/dcds.2013.33.3937

[14]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure and Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[15]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[16]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[17]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037

[18]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[19]

Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks and Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967

[20]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (351)
  • HTML views (203)
  • Cited by (3)

Other articles
by authors

[Back to Top]