We consider the boundary value problem
$\begin{equation*} \begin{cases} -{\rm div}_G(w_1\nabla_G u) = w_2f(u) &\text{ in } \Omega,\\ u=0 &\text{ on } \partial\Omega, \end{cases}\end{equation*}$
where $\Omega$ is a bounded or unbounded $C^1$ domain of $\mathbb{R}^N$, $w_1, w_2 \in L^1_{\rm loc}(\Omega)\setminus\{0\}$ are nonnegative functions, $f$ is an increasing function, $\nabla_G$ and ${\rm div}_G$ are Grushin gradient and Grushin divergence, respectively. We prove some Liouville theorems for stable weak solutions of the problem under suitable assumptions on $\Omega$, $w_1$, $w_2$ and $f$. We also show the sharpness of our results when $\Omega=\mathbb{R}^N$ and $f$ has power or exponential growth.
Citation: |
[1] | C. T. Anh, J. Lee and B. K. My, On the classification of solutions to an elliptic equation involving the {G}rushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688. doi: 10.1080/17476933.2017.1332051. |
[2] | I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308. doi: 10.1016/S0294-1449(97)80138-2. |
[3] | I. Birindelli and J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via the moving plane method, Comm. Partial Differential Equations, 24 (1999), 1875-1890. doi: 10.1080/03605309908821485. |
[4] | D. Castorina, P. Esposito and B. Sciunzi, Low dimensional instability for semilinear and quasilinear problems in $\Bbb R^N$, Commun. Pure Appl. Anal., 8 (2009), 1779-1793. doi: 10.3934/cpaa.2009.8.1779. |
[5] | C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012. doi: 10.1090/S0002-9939-2011-11351-0. |
[6] | L. Damascelli, A. Farina, B. Sciunzi and E. Valdinoci, Liouville results for m-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119. doi: 10.1016/j.anihpc.2008.06.001. |
[7] | L. D'Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc., 132 (2004), 725-734. doi: 10.1090/S0002-9939-03-07232-0. |
[8] | E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005. |
[9] | A. T. Duong and N. T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations, Paper No. 108, 11. |
[10] | L. Dupaigne and A. Farina, Stable solutions of $-\Delta u = f(u)$ in $\Bbb R^N$, J. Eur. Math. Soc. (JEMS), 12 (2010), 855-882. doi: 10.4171/JEMS/217. |
[11] | L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, vol. 143 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802. |
[12] | A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9), 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001. |
[13] | A. Farina, Stable solutions of $-\Delta u = e^u$ on $\Bbb R^N$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66. doi: 10.1016/j.crma.2007.05.021. |
[14] | B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. doi: 10.1080/03605309408821025. |
[15] | D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269. doi: 10.1007/BF00250508. |
[16] | P. Le, Liouville theorems for stable solutions of p-Laplace equations with convex nonlinearities, J. Math. Anal. Appl., 443 (2016), 431-444. doi: 10.1016/j.jmaa.2016.05.040. |
[17] | P. Le and V. Ho, Stable solutions to weighted quasilinear problems of Lane-Emden type, Electron. J. Differential Equations, Paper No. 71, 11. |
[18] | P. Le and V. Ho, Liouville results for stable solutions of quasilinear equations with weights, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 357-368. |
[19] | P. Le, D. H. T. Le and K. A. T. Le, On stable solutions to weighted quasilinear problems of Gelfand type, Mediterr. J. Math., 15 (2018), Art. 94, 12. doi: 10.1007/s00009-018-1143-7. |
[20] | P. Le, H. T. Nguyen and T. Y. Nguyen, On positive stable solutions to weighted quasilinear problems with negative exponent, Complex Var. Elliptic Equ., 63 (2018), 1739-1751. doi: 10.1080/17476933.2017.1403429. |
[21] | D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc. (JEMS), 12 (2010), 611-654. doi: 10.4171/JEMS/210. |
[22] | B. Rahal, Liouville-type theorems with finite {M}orse index for semilinear $\Delta_\lambda$-Laplace operators, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Art. 21, 19. doi: 10.1007/s00030-018-0512-z. |
[23] | C. Wang and D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705-1727. doi: 10.1016/j.jfa.2011.11.017. |
[24] | X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1450050, 12. doi: 10.1142/S0219199714500503. |