-
Previous Article
On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations
- CPAA Home
- This Issue
-
Next Article
Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method
Potential well and multiplicity of solutions for nonlinear Dirac equations
1. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex System, Ministry of Education, 100875 Beijing, China |
2. | Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190 Beijing, China |
3. | Center for Applied Mathematics, Tianjin University, 300072 Tianjin, China |
$ -i\hbar \sum\limits_{k = 1}^{3}\alpha_k\partial_k w+a\beta w+V(x)w = f(|w|)w. $ |
$ V $ |
References:
[1] |
N. Ackermann,
A nonlinear superposition principle and multibump solution of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 423-443.
doi: 10.1016/j.jfa.2005.11.010. |
[2] |
A. Ambrosetti, M. Badiale and S. Cignolani,
Semi-classical states of nonlinear Shrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.
doi: 10.1007/s002050050067. |
[3] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[4] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, (2001), 253–271.
doi: 10.1007/s002050100152. |
[5] |
A. Bahri and J. M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[6] |
T. Bartsch, M. Clapp and T. Weth,
Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[7] |
V. Benci and G. Cerami,
The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.
doi: 10.1007/BF00375686. |
[8] |
V. Benci and G. Cerami,
Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994), 29-48.
doi: 10.1007/BF01234314. |
[9] |
V. Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, tribute in honor of G. Prodi, Quaderno Scuola Normale Sup. Pisa, (1991), 93–107. |
[10] |
J. Byeon and L. Jeanjean,
Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185-200.
doi: 10.1007/s00205-006-0019-3. |
[11] |
J. Byeon and Z. Q. Wang,
Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[12] |
G. Cerami and D. Passaseo,
Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA, 18 (1992), 109-119.
doi: 10.1016/0362-546X(92)90089-W. |
[13] |
S. Cingolani and M. Lazzo,
Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10 (1997), 1-13.
doi: 10.12775/TMNA.1997.019. |
[14] |
S. Cingolani, L. Jeanjean and K. Tanaka,
Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential Equations, 53 (2015), 413-439.
doi: 10.1007/s00526-014-0754-5. |
[15] |
S. Cingolani and M. Lazzo,
Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160 (2000), 118-138.
doi: 10.1006/jdeq.1999.3662. |
[16] |
E. N. Dancer and J. Wei,
On the effect of domain topology in a singular perturbation problem, Top. Methods Nonlinear Anal., 4 (1999), 347-368.
doi: 10.12775/TMNA.1998.016. |
[17] |
E. N. Dancer and S. Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differ. Equ., 4 (1999), 347–368. |
[18] |
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990. |
[19] |
A. Pomponio and D. Ruiz,
Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.
doi: 10.1016/j.jfa.2012.03.009. |
[20] |
M. Del Pino and P. Felmer,
Local mountain passes for semilinear ellipitc problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[21] |
M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 15. No. 2. Elsevier Masson, 1998, 127–149.
doi: 10.1016/S0294-1449(97)89296-7. |
[22] |
M. Del Pino and P. Felmer,
Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.
doi: 10.1007/s002080200327. |
[23] |
Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., 7, World Scientific Publ., 2007.
doi: 10.1142/9789812709639. |
[24] |
Y. H. Ding,
Semi-classical ground states concentrating on the nonlinear potentical for a Dirac equation, J. Differ. Equ., 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[25] |
Y. H. Ding, C. Lee and B. Ruf,
On semiclassical states of a nonlinear Dirac equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 765-790.
doi: 10.1017/S0308210511001752. |
[26] |
Y. H. Ding and B. Ruf,
Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM Journal on Mathematical Analysis, 44 (2012), 3755-3785.
doi: 10.1137/110850670. |
[27] |
Y. H. Ding and T. Xu,
Localized concentration of semiclassical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.
doi: 10.1007/s00205-014-0811-4. |
[28] |
Y. H. Ding and T. Xu,
Contrating patterns of reaction-diffusion systems: A variational approach, Trans. Amer. Math. Soc., 369 (2017), 97-138.
doi: 10.1090/tran/6626. |
[29] |
J. Esteban and Eric Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys., 171 (1995), 323–350. |
[30] |
R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Physical Review, 83 (1951), 326–332. |
[31] |
R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Physical Review, 103 (1956), 1571–1579. Google Scholar |
[32] |
G. Fournier and M. Willem, Relative category and the calculus of variations, in Variational Methods, H. Berestycki et al. Birkhäuser Boston, 4 (1990), 95–104. |
[33] |
A. Floer and A. Weinstein,
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[34] |
D. D. Ivanenko, Notes to the theory of interaction via particles, Zh.Éksp. Teor. Fiz., 8 (1938), 260–266. Google Scholar |
[35] |
P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, Part Ⅱ, AIP Anal. non linéaire, 1, 223–283. |
[36] |
Y. G. Oh,
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519.
doi: 10.1080/03605308808820585. |
[37] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223–253. |
[38] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew Math Phys, 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[39] |
A. Szulkin and T. Weth,
Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013. |
[40] |
Z. Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 56, 30 pp.
doi: 10.1007/s00526-018-1319-9. |
[41] |
M. Willem, Minimax Theorems, Birkhäuser, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
N. Ackermann,
A nonlinear superposition principle and multibump solution of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 423-443.
doi: 10.1016/j.jfa.2005.11.010. |
[2] |
A. Ambrosetti, M. Badiale and S. Cignolani,
Semi-classical states of nonlinear Shrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.
doi: 10.1007/s002050050067. |
[3] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[4] |
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, (2001), 253–271.
doi: 10.1007/s002050100152. |
[5] |
A. Bahri and J. M. Coron,
On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302. |
[6] |
T. Bartsch, M. Clapp and T. Weth,
Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann., 338 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[7] |
V. Benci and G. Cerami,
The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), 79-93.
doi: 10.1007/BF00375686. |
[8] |
V. Benci and G. Cerami,
Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994), 29-48.
doi: 10.1007/BF01234314. |
[9] |
V. Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, tribute in honor of G. Prodi, Quaderno Scuola Normale Sup. Pisa, (1991), 93–107. |
[10] |
J. Byeon and L. Jeanjean,
Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185-200.
doi: 10.1007/s00205-006-0019-3. |
[11] |
J. Byeon and Z. Q. Wang,
Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[12] |
G. Cerami and D. Passaseo,
Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. TMA, 18 (1992), 109-119.
doi: 10.1016/0362-546X(92)90089-W. |
[13] |
S. Cingolani and M. Lazzo,
Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal., 10 (1997), 1-13.
doi: 10.12775/TMNA.1997.019. |
[14] |
S. Cingolani, L. Jeanjean and K. Tanaka,
Multiplicity of positive solutions of nonlinear Schrödinger equations concentrating at a potential well, Calc. Var. Partial Differential Equations, 53 (2015), 413-439.
doi: 10.1007/s00526-014-0754-5. |
[15] |
S. Cingolani and M. Lazzo,
Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differ. Equ., 160 (2000), 118-138.
doi: 10.1006/jdeq.1999.3662. |
[16] |
E. N. Dancer and J. Wei,
On the effect of domain topology in a singular perturbation problem, Top. Methods Nonlinear Anal., 4 (1999), 347-368.
doi: 10.12775/TMNA.1998.016. |
[17] |
E. N. Dancer and S. Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differ. Equ., 4 (1999), 347–368. |
[18] |
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer, Berlin, 1990. |
[19] |
A. Pomponio and D. Ruiz,
Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.
doi: 10.1016/j.jfa.2012.03.009. |
[20] |
M. Del Pino and P. Felmer,
Local mountain passes for semilinear ellipitc problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[21] |
M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 15. No. 2. Elsevier Masson, 1998, 127–149.
doi: 10.1016/S0294-1449(97)89296-7. |
[22] |
M. Del Pino and P. Felmer,
Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.
doi: 10.1007/s002080200327. |
[23] |
Y. H. Ding, Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., 7, World Scientific Publ., 2007.
doi: 10.1142/9789812709639. |
[24] |
Y. H. Ding,
Semi-classical ground states concentrating on the nonlinear potentical for a Dirac equation, J. Differ. Equ., 249 (2010), 1015-1034.
doi: 10.1016/j.jde.2010.03.022. |
[25] |
Y. H. Ding, C. Lee and B. Ruf,
On semiclassical states of a nonlinear Dirac equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 765-790.
doi: 10.1017/S0308210511001752. |
[26] |
Y. H. Ding and B. Ruf,
Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM Journal on Mathematical Analysis, 44 (2012), 3755-3785.
doi: 10.1137/110850670. |
[27] |
Y. H. Ding and T. Xu,
Localized concentration of semiclassical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.
doi: 10.1007/s00205-014-0811-4. |
[28] |
Y. H. Ding and T. Xu,
Contrating patterns of reaction-diffusion systems: A variational approach, Trans. Amer. Math. Soc., 369 (2017), 97-138.
doi: 10.1090/tran/6626. |
[29] |
J. Esteban and Eric Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys., 171 (1995), 323–350. |
[30] |
R. Finkelstein, R. LeLevier and M. Ruderman, Nonlinear spinor fields, Physical Review, 83 (1951), 326–332. |
[31] |
R. Finkelstein, C. Fronsdal and P. Kaus, Nonlinear spinor field, Physical Review, 103 (1956), 1571–1579. Google Scholar |
[32] |
G. Fournier and M. Willem, Relative category and the calculus of variations, in Variational Methods, H. Berestycki et al. Birkhäuser Boston, 4 (1990), 95–104. |
[33] |
A. Floer and A. Weinstein,
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[34] |
D. D. Ivanenko, Notes to the theory of interaction via particles, Zh.Éksp. Teor. Fiz., 8 (1938), 260–266. Google Scholar |
[35] |
P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case, Part Ⅱ, AIP Anal. non linéaire, 1, 223–283. |
[36] |
Y. G. Oh,
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. Partial Differential Equations, 13 (1988), 1499-1519.
doi: 10.1080/03605308808820585. |
[37] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223–253. |
[38] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew Math Phys, 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[39] |
A. Szulkin and T. Weth,
Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013. |
[40] |
Z. Q. Wang and X. Zhang, An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 56, 30 pp.
doi: 10.1007/s00526-018-1319-9. |
[41] |
M. Willem, Minimax Theorems, Birkhäuser, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[4] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[5] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[6] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[7] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[8] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[9] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[10] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[11] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[12] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[13] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[14] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[15] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[16] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[17] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[18] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[19] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[20] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]