January  2020, 19(1): 609-640. doi: 10.3934/cpaa.2020029

On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations

Dipartimento di Matematica, Sapienza Università di Roma, Piero D'Ancona, Piazzale A. Moro 2, 00185 Roma, Italy

Received  November 2018 Revised  February 2019 Published  July 2019

We prove a sharp resolvent estimate in scale invariant norms of Amgon–Hörmander type for a magnetic Schrödinger operator on
$ \mathbb{R}^{n} $
,
$ n\ge3 $
$ \begin{equation*} L = -(\partial+iA)^{2}+V \end{equation*} $
with large potentials
$ A, V $
of almost critical decay and regularity.
The estimate is applied to prove sharp smoothing and Strichartz estimates for the Schrödinger, wave and Klein–Gordon flows associated to
$ L $
.
Citation: P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218.  Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30 (1976), 1–38. doi: 10.1007/BF02786703.  Google Scholar

[3]

G. Artbazar and K. Yajima, The Lp-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240.   Google Scholar

[4]

P. Auscher and J. M. Martell, Weighted norm inequalities for fractional operators, Indiana Univ. Math. J., 57 (2008), 1845-1869.  doi: 10.1512/iumj.2008.57.3236.  Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976.  Google Scholar

[6]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[7]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[8]

F. Cacciafesta and P. D'Ancona, Weighted Lp estimates for powers of selfadjoint operators, Adv. Math., 229 (2002), 501–530. doi: 10.1016/j.aim.2011.09.007.  Google Scholar

[9]

F. CacciafestaP. D'Ancona and R. Lucà, Helmholtz and dispersive equations with variable coefficients on exterior domains, SIAM J. Appl. Math., 48 (2016), 1798-1832.  doi: 10.1137/15M103769X.  Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[11]

P. D'Ancona, Kato smoothing and strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1–16. doi: 10.1007/s00220-014-2169-8.  Google Scholar

[12]

P. D'Ancona and L. Fanelli, Lp-boundedness of the wave operator for the one dimensional Schrödinger operator, Comm. Math. Phys., 268 (2006), 415-438.  doi: 10.1007/s00220-006-0098-x.  Google Scholar

[13]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112.  doi: 10.1080/03605300701743749.  Google Scholar

[14]

P. D'AnconaL. FanelliL. Vega and N. Visciglia, Endpoint Strichartzz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240.  doi: 10.1016/j.jfa.2010.02.007.  Google Scholar

[15]

P. D'Ancona and M. Okamoto, On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl., 456 (2017), 1203–1237. doi: 10.1016/j.jmaa.2017.07.055.  Google Scholar

[16]

P. D'Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005), 30-77.  doi: 10.1016/j.jfa.2005.05.013.  Google Scholar

[17]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartzz and smoothing estimates for Schrödinger operators with large magnetic potentials in r3, Journal of the European Mathematical Society, 10 (2008), 507-531.  doi: 10.4171/JEMS/120.  Google Scholar

[18]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Mathematicum, 21 (2009), 687-722.  doi: 10.1515/FORUM.2009.035.  Google Scholar

[19]

L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278.  doi: 10.1007/s00208-008-0303-7.  Google Scholar

[20]

V. Georgiev, A. Stefanov and M. Tarulli, Strichartz estimates for the Schrödinger equation with small magnetic potential, In Journées "Équations aux Dérivées Partielles", pages Exp. No. IV, 17. École Polytech., Palaiseau, 2005.  Google Scholar

[21]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 64 (1985), 363–401.  Google Scholar

[22]

J. Ginibre and G. Velo, Generalized Strichartzz inequalities for the wave equation, In Partial Differential Operators and Mathematical Physics (Holzhau, 1994), volume 78 of Oper. Theory Adv. Appl., pages 153–160. Birkhäuser, Basel, 1995.  Google Scholar

[23]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, second edition, 2008.  Google Scholar

[24]

A. Ionescu and C. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Mathematical Research Letters, 12 (2005), 193-205.  doi: 10.4310/MRL.2005.v12.n2.a5.  Google Scholar

[25]

R. Johnson and C. J. Neugebauer, Change of variable results for Ap- and reverse Hölder RHr-classes, Trans. Amer. Math. Soc., 328 (1991), 639-666.  doi: 10.2307/2001798.  Google Scholar

[26]

L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[27]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[28]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.  Google Scholar

[29]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255-288.  doi: 10.1016/S0294-1449(16)30213-X.  Google Scholar

[31]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys., 267 (2006), 419-449.  doi: 10.1007/s00220-006-0060-y.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

J. MarzuolaJ. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497-1553.  doi: 10.1016/j.jfa.2008.05.022.  Google Scholar

[34]

H. Mizutani, Global-in-time smoothing effects for Schödinger equations with inverse–square potentials, arXiv: 1610.01745, 2016. doi: 10.1090/proc/13729.  Google Scholar

[35]

K. Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci., 46 (2010), 741-754.  doi: 10.2977/PRIMS/24.  Google Scholar

[36]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.  doi: 10.2307/1996833.  Google Scholar

[37]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.  Google Scholar

[38]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513.  doi: 10.1007/s00222-003-0325-4.  Google Scholar

[39]

A. Stefanov, Strichartz estimates for the magnetic Schrödinger equation, Adv. Math., 210 (2007), 246-303.  doi: 10.1016/j.aim.2006.06.006.  Google Scholar

[40]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[41]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634.  doi: 10.1353/ajm.0.0000.  Google Scholar

[42]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

[43]

K. Yajima, The Wk, p-continuity of wave operators for schrödinger operators. ⅲ. even-dimensional cases m ≥ 4, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346.   Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218.  Google Scholar

[2]

S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., 30 (1976), 1–38. doi: 10.1007/BF02786703.  Google Scholar

[3]

G. Artbazar and K. Yajima, The Lp-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240.   Google Scholar

[4]

P. Auscher and J. M. Martell, Weighted norm inequalities for fractional operators, Indiana Univ. Math. J., 57 (2008), 1845-1869.  doi: 10.1512/iumj.2008.57.3236.  Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976.  Google Scholar

[6]

P. Brenner, On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations, J. Differential Equations, 56 (1985), 310-344.  doi: 10.1016/0022-0396(85)90083-X.  Google Scholar

[7]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1680.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[8]

F. Cacciafesta and P. D'Ancona, Weighted Lp estimates for powers of selfadjoint operators, Adv. Math., 229 (2002), 501–530. doi: 10.1016/j.aim.2011.09.007.  Google Scholar

[9]

F. CacciafestaP. D'Ancona and R. Lucà, Helmholtz and dispersive equations with variable coefficients on exterior domains, SIAM J. Appl. Math., 48 (2016), 1798-1832.  doi: 10.1137/15M103769X.  Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[11]

P. D'Ancona, Kato smoothing and strichartz estimates for wave equations with magnetic potentials, Comm. Math. Phys., 335 (2015), 1–16. doi: 10.1007/s00220-014-2169-8.  Google Scholar

[12]

P. D'Ancona and L. Fanelli, Lp-boundedness of the wave operator for the one dimensional Schrödinger operator, Comm. Math. Phys., 268 (2006), 415-438.  doi: 10.1007/s00220-006-0098-x.  Google Scholar

[13]

P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112.  doi: 10.1080/03605300701743749.  Google Scholar

[14]

P. D'AnconaL. FanelliL. Vega and N. Visciglia, Endpoint Strichartzz estimates for the magnetic Schrödinger equation, J. Funct. Anal., 258 (2010), 3227-3240.  doi: 10.1016/j.jfa.2010.02.007.  Google Scholar

[15]

P. D'Ancona and M. Okamoto, On the cubic Dirac equation with potential and the Lochak–Majorana condition, J. Math. Anal. Appl., 456 (2017), 1203–1237. doi: 10.1016/j.jmaa.2017.07.055.  Google Scholar

[16]

P. D'Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal., 227 (2005), 30-77.  doi: 10.1016/j.jfa.2005.05.013.  Google Scholar

[17]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartzz and smoothing estimates for Schrödinger operators with large magnetic potentials in r3, Journal of the European Mathematical Society, 10 (2008), 507-531.  doi: 10.4171/JEMS/120.  Google Scholar

[18]

M. B. ErdoğanM. Goldberg and W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Mathematicum, 21 (2009), 687-722.  doi: 10.1515/FORUM.2009.035.  Google Scholar

[19]

L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278.  doi: 10.1007/s00208-008-0303-7.  Google Scholar

[20]

V. Georgiev, A. Stefanov and M. Tarulli, Strichartz estimates for the Schrödinger equation with small magnetic potential, In Journées "Équations aux Dérivées Partielles", pages Exp. No. IV, 17. École Polytech., Palaiseau, 2005.  Google Scholar

[21]

J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 64 (1985), 363–401.  Google Scholar

[22]

J. Ginibre and G. Velo, Generalized Strichartzz inequalities for the wave equation, In Partial Differential Operators and Mathematical Physics (Holzhau, 1994), volume 78 of Oper. Theory Adv. Appl., pages 153–160. Birkhäuser, Basel, 1995.  Google Scholar

[23]

L. Grafakos, Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, Springer, New York, second edition, 2008.  Google Scholar

[24]

A. Ionescu and C. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Mathematical Research Letters, 12 (2005), 193-205.  doi: 10.4310/MRL.2005.v12.n2.a5.  Google Scholar

[25]

R. Johnson and C. J. Neugebauer, Change of variable results for Ap- and reverse Hölder RHr-classes, Trans. Amer. Math. Soc., 328 (1991), 639-666.  doi: 10.2307/2001798.  Google Scholar

[26]

L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[27]

T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1965/1966), 258-279.  doi: 10.1007/BF01360915.  Google Scholar

[28]

T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys., 1 (1989), 481-496.  doi: 10.1142/S0129055X89000171.  Google Scholar

[29]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 255-288.  doi: 10.1016/S0294-1449(16)30213-X.  Google Scholar

[31]

H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys., 267 (2006), 419-449.  doi: 10.1007/s00220-006-0060-y.  Google Scholar

[32]

S. MachiharaK. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.  doi: 10.4171/RMI/342.  Google Scholar

[33]

J. MarzuolaJ. Metcalfe and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497-1553.  doi: 10.1016/j.jfa.2008.05.022.  Google Scholar

[34]

H. Mizutani, Global-in-time smoothing effects for Schödinger equations with inverse–square potentials, arXiv: 1610.01745, 2016. doi: 10.1090/proc/13729.  Google Scholar

[35]

K. Mochizuki, Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations, Publ. Res. Inst. Math. Sci., 46 (2010), 741-754.  doi: 10.2977/PRIMS/24.  Google Scholar

[36]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.  doi: 10.2307/1996833.  Google Scholar

[37]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.  Google Scholar

[38]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513.  doi: 10.1007/s00222-003-0325-4.  Google Scholar

[39]

A. Stefanov, Strichartz estimates for the magnetic Schrödinger equation, Adv. Math., 210 (2007), 246-303.  doi: 10.1016/j.aim.2006.06.006.  Google Scholar

[40]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[41]

D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math., 130 (2008), 571-634.  doi: 10.1353/ajm.0.0000.  Google Scholar

[42]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

[43]

K. Yajima, The Wk, p-continuity of wave operators for schrödinger operators. ⅲ. even-dimensional cases m ≥ 4, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346.   Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[18]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (159)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]