Advanced Search
Article Contents
Article Contents

Geometry of self-similar measures on intervals with overlaps and applications to sub-Gaussian heat kernel estimates

  • *Corresponding author

    *Corresponding author

This research was supported in part by the National Natural Science Foundation of China, grants 11871296, 11771136 and 11271122, by Tsinghua University Initiative Scientific Research Program, and by a Hong Kong RGC grant. SN is also supported in part by Construct Program of the Key Discipline in Hunan Province, the Hunan Province Hundred Talents Program, and the Center of Mathematical Sciences and Applications of Harvard University

Abstract Full Text(HTML) Figure(5) Related Papers Cited by
  • We study the geometric properties of self-similar measures on intervals generated by iterated function systems (IFS's) that do not satisfy the open set condition (OSC) and have overlaps. The examples studied in this paper are the infinite Bernoulli convolution associated with the golden ratio, and a family of convolutions of Cantor-type measures. We make use of Strichartz second-order identities defined by auxiliary IFS's to compute measures of cells on different levels. These auxiliary IFS's do satisfy the OSC and are used to define new metrics. As an application, we obtain sub-Gaussian heat kernel estimates of the time changed Brownian motions with respect to these measures. The walk dimensions obtained under these new metrics are strictly greater than $ 2 $ and are closely related to the spectral dimension of fractal Laplacians.

    Mathematics Subject Classification: Primary: 28A80, 35K08; Secondary: 35J05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  (a) The IFS {S0, S1} has overlaps. (b) The auxiliary IFS {T0, T1, T2} does not have overlaps

    Figure 2.  Points $ x, y $ and cells $ K_{\omega ^{\prime }}, K_{\tau ^{\prime }} $, where $ \omega = \omega ^{\prime }0 $

    Figure 3.  Positions of three points $ x, y, z $ when $ \omega ^{\prime} = \omega $

    Figure 4.  A chain of $ k+1 $ cells with length $ | \omega | $ contained in $ [x, z] $

    Figure 5.  (a) The IFS $\{S_i\}_{i = 0}^3$ has overlaps. (b) The auxiliary IFS $\{T_i\}_{i = 0}^2$ does not have overlaps

  • [1] M. T. Barlow and R. F. Bass, Transition densities for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields, 91 (1992), 307-330.  doi: 10.1007/BF01192060.
    [2] M. T. Barlow and R. F. Bass, Brownian motion and harmonic analysis on Sierpiński carpets, Canad. J. Math., 51 (1999), 673-744.  doi: 10.4153/CJM-1999-031-4.
    [3] M. T. BarlowT. Coulhon and T. Kumagai, Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs, Comm. Pure Appl. Math., 58 (2005), 1642-1677.  doi: 10.1002/cpa.20091.
    [4] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543-624.  doi: 10.1007/BF00318785.
    [5] E. J. BirdS.-M. Ngai and A. Teplyaev, Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec, 27 (2003), 135-168. 
    [6] K. DalrympleR. S. Strichartz and J. P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl., 5 (1999), 203-284.  doi: 10.1007/BF01261610.
    [7] M. ElekesT. Keleti and A. Máthé, Self-similar and self-affine sets: measure of the intersection of two copies, Ergodic Theory Dynam. Systems, 30 (2010), 399-440.  doi: 10.1017/S0143385709000121.
    [8] P. J. FitzsimmonsB. M. Hambly and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., 165 (1994), 595-620. 
    [9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, second revised and extended edition, Walter de Gruyter, Studies in Mathematics, 19, 2011.
    [10] A. Grigor'yan and J. Hu, Heat kernels and Green functions on metric measure spaces, Canad. J. Math., 66 (2014), 641-699.  doi: 10.4153/CJM-2012-061-5.
    [11] A. Grigor'yanJ. Hu and K.-S. Lau, Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces, J. Math. Soc. Japan, 67 (2015), 1485-1549.  doi: 10.2969/jmsj/06741485.
    [12] A. Grigor'yanJ. Hu and K.-S. Lau, Heat kernels on metric-measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc., 355 (2003), 2065-2095.  doi: 10.1090/S0002-9947-03-03211-2.
    [13] A. Grigor'yan and A. Telcs, Two-sided estimates of heat kernels on metric measure spaces, Ann. Probab., 40 (2012), 1212-1284.  doi: 10.1214/11-AOP645.
    [14] B.M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc. (3), 79 (1999), 431–458. doi: 10.1112/S0024611599001744.
    [15] J. Hu, An analytical approach to heat kernel estimates on strongly recurrent metric spaces, Proc. Edin. Math. Soc., 51 (2008), 171-199.  doi: 10.1017/S001309150500177X.
    [16] J. HuK.-S. Lau and S.-M. Ngai, Laplace operators related to self-similar measures on $\mathbb{R}^d$, J. Funct. Anal., 239 (2006), 542-565.  doi: 10.1016/j.jfa.2006.07.005.
    [17] J. Kigami, Volume doubling measures and heat kernel estimates on self-similar sets, Mem. Amer. Math. Soc., 199 (2009), no. 932. doi: 10.1090/memo/0932.
    [18] J. Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc., 216 (2012), no. 1015. doi: 10.1090/S0065-9266-2011-00632-5.
    [19] J. Kigami, Time changes of the Brownian motion: Poincaré inequality, heat kernel estimate and protodistance, Mem. Amer. Math. Soc., 209 (2019), no. 1250.
    [20] T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields, 96 (1993), 205-224.  doi: 10.1007/BF01192133.
    [21] T. Kumagai, Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms, Publ. Res. Inst. Math. Sci., 40 (2004), 793-818. 
    [22] T. Kumagai and K. T. Sturm, Construction of diffusion processes on fractals, $d$-sets, and general metric measure spaces, J. Math. Kyoto Univ., 45 (2005), 307-327.  doi: 10.1215/kjm/1250281992.
    [23] K.-S. Lau and S.-M. Ngai, Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J., 49 (2000), 925-972.  doi: 10.1512/iumj.2000.49.1789.
    [24] Y.-T. Lee, Infinite propagation speed for wave solutions on some p.c.f. fractals, preprint.
    [25] S.-M. Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math., 63 (2011), 648-688.  doi: 10.4153/CJM-2011-011-3.
    [26] S.-M. Ngai, W. Tang and Y. Xie, Wave propagation speed on fractals, preprint.
    [27] R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc., 46 (1999), 1199-1208. 
    [28] R. S. StrichartzA. Taylor and T. Zhang, Densities of self-similar measures on the line, Experiment. Math., 4 (1995), 101-128. 
  • 加载中



Article Metrics

HTML views(311) PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint