-
Previous Article
Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry
- CPAA Home
- This Issue
-
Next Article
Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space
(1+2)-dimensional Black-Scholes equations with mixed boundary conditions
1. | Department of Applied Mathematics & Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea |
2. | Department of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea |
In this paper, we investigate (1+2)-dimensional Black-Scholes partial differential equations(PDE) with mixed boundary conditions. The main idea of our method is to transform the given PDE into the relatively simple ordinary differential equations(ODE) using double Mellin transforms. By using inverse double Mellin transforms, we derive the analytic representation of the solutions for the (1+2)-dimensional Black-Scholes equation with a mixed boundary condition. Moreover, we apply our method to European maximum-quanto lookback options and derive the pricing formula of this options.
References:
[1] |
J. Bertrand, P. Bertrand and J. P. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook (ed. A.D. Poularikas), IEEE Press, New York, (1996), 829–885. |
[2] |
M. Dai, H. Y. Wong and Y. K. Kwok,
Quanto lookback options, Math. Finance, 14 (2004), 445-467.
doi: 10.1111/j.0960-1627.2004.00199.x. |
[3] |
A. Dravid, M. Richardson and T. S Sun, Pricing foreign index contingent claims: An application to Nikkei index warrants, Journal of Derivatives, 1 (1993), 33-51. Google Scholar |
[4] |
H. Eltayeb and A. Kılıçman,
A note on Mellin transform and partial differential equations, Int. J. Pure Appl. Math., 34 (2007), 457-467.
|
[5] |
J. Jeon, H. Han, H. Kim and M. Kang,
An integral equation representation approach for valuing Russian options with a finite time horizon, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 496-516.
doi: 10.1016/j.cnsns.2015.12.019. |
[6] |
I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York., 1972. Google Scholar |
[7] |
J. H. Yoon and J. H. Kim,
The pricing of vulnerable options with double Mellin transforms, J. Math. Anal. Appl., 422 (2015), 838-857.
doi: 10.1016/j.jmaa.2014.09.015. |
show all references
References:
[1] |
J. Bertrand, P. Bertrand and J. P. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook (ed. A.D. Poularikas), IEEE Press, New York, (1996), 829–885. |
[2] |
M. Dai, H. Y. Wong and Y. K. Kwok,
Quanto lookback options, Math. Finance, 14 (2004), 445-467.
doi: 10.1111/j.0960-1627.2004.00199.x. |
[3] |
A. Dravid, M. Richardson and T. S Sun, Pricing foreign index contingent claims: An application to Nikkei index warrants, Journal of Derivatives, 1 (1993), 33-51. Google Scholar |
[4] |
H. Eltayeb and A. Kılıçman,
A note on Mellin transform and partial differential equations, Int. J. Pure Appl. Math., 34 (2007), 457-467.
|
[5] |
J. Jeon, H. Han, H. Kim and M. Kang,
An integral equation representation approach for valuing Russian options with a finite time horizon, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 496-516.
doi: 10.1016/j.cnsns.2015.12.019. |
[6] |
I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York., 1972. Google Scholar |
[7] |
J. H. Yoon and J. H. Kim,
The pricing of vulnerable options with double Mellin transforms, J. Math. Anal. Appl., 422 (2015), 838-857.
doi: 10.1016/j.jmaa.2014.09.015. |
[1] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[2] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[3] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[4] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[5] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[6] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[7] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[8] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[9] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[10] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[11] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[12] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[13] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[14] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[15] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
[16] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[17] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[18] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[19] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[20] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]