• Previous Article
    Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping
  • CPAA Home
  • This Issue
  • Next Article
    Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain
February  2020, 19(2): 771-783. doi: 10.3934/cpaa.2020036

Liouville theorems for an integral equation of Choquard type

1. 

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. 

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Received  November 2018 Revised  July 2019 Published  October 2019

We establish sharp Liouville theorems for the integral equation
$ u(x) = \int_{\mathbb{R}^n} \frac{u^{p-1}(y)}{|x-y|^{n-\alpha}} \int_{\mathbb{R}^n} \frac{u^p(z)}{|y-z|^{n-\beta}} dz dy, \quad x\in\mathbb{R}^n, $
where
$ 0<\alpha, \beta<n $
and
$ p>1 $
. Our results hold true for positive solutions under appropriate assumptions on
$ p $
and integrability of the solutions. As a consequence, we derive a Liouville theorem for positive
$ H^{\frac{\alpha}{2}}(\mathbb{R}^n) $
solutions of the higher fractional order Choquard type equation
$ (-\Delta)^{\frac{\alpha}{2}} u = \left(\frac{1}{|x|^{n-\beta}} * u^p\right) u^{p-1} \quad\text{ in } \mathbb{R}^n. $
Citation: Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure & Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036
References:
[1]

D. Applebaum, Lévy processes - from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[2]

P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447–1476. doi: 10.1142/S0218202515500384.  Google Scholar

[3]

P. BelchiorH. BuenoO. H. Miyagaki and G. A. Pereira, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53.  doi: 10.1016/j.na.2017.08.005.  Google Scholar

[4]

J. Bertoin, Lévy Processes, Cambridge University Press, 1996.  Google Scholar

[5]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[6]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[7]

D. Cao and W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.  doi: 10.1017/prm.2018.67.  Google Scholar

[8]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[9]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[12]

P. Constantin, Euler Equations, Navier-Stokes Equations and Turbulence, Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of lecture Notes in Math. 1–43, Springer, Berlin, 2006. doi: 10.1007/11545989_1.  Google Scholar

[13]

W. DaiY. FangJ. HuangY. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389-1403.  doi: 10.3934/dcds.2018117.  Google Scholar

[14]

P. Le, Symmetry and classification of solutions to an integral equation of Choquard type, submitted for publication. Google Scholar

[15]

P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141. doi: 10.1016/j.na.2019.03.006.  Google Scholar

[16]

Y. Lei, Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351-5377.  doi: 10.3934/dcds.2018236.  Google Scholar

[17]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[18]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

E. Lieb, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977) 185–194.  Google Scholar

[20]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[22]

I. MorozR. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.  doi: 10.1088/0264-9381/15/9/019.  Google Scholar

[23]

V. Moroz and J. V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[24]

V. Moroz and J. V. Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains}, J. Differential Equations, 254 (2013), 3089-3145.  doi: 10.1016/j.jde.2012.12.019.  Google Scholar

[25]

S. Pekar, Untersuchungen über die Elekronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, New Jersey, 1970.  Google Scholar

[27]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[28]

D. Xu and Y. Lei, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89.  doi: 10.1016/j.aml.2014.12.007.  Google Scholar

[29]

W. Zhang and X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183.  doi: 10.1016/j.jmaa.2018.04.048.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy processes - from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[2]

P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447–1476. doi: 10.1142/S0218202515500384.  Google Scholar

[3]

P. BelchiorH. BuenoO. H. Miyagaki and G. A. Pereira, Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53.  doi: 10.1016/j.na.2017.08.005.  Google Scholar

[4]

J. Bertoin, Lévy Processes, Cambridge University Press, 1996.  Google Scholar

[5]

J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[6]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[7]

D. Cao and W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.  doi: 10.1017/prm.2018.67.  Google Scholar

[8]

G. CaristiL. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[9]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.  Google Scholar

[11]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[12]

P. Constantin, Euler Equations, Navier-Stokes Equations and Turbulence, Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of lecture Notes in Math. 1–43, Springer, Berlin, 2006. doi: 10.1007/11545989_1.  Google Scholar

[13]

W. DaiY. FangJ. HuangY. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389-1403.  doi: 10.3934/dcds.2018117.  Google Scholar

[14]

P. Le, Symmetry and classification of solutions to an integral equation of Choquard type, submitted for publication. Google Scholar

[15]

P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141. doi: 10.1016/j.na.2019.03.006.  Google Scholar

[16]

Y. Lei, Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351-5377.  doi: 10.3934/dcds.2018236.  Google Scholar

[17]

Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.  doi: 10.1007/s00209-012-1036-6.  Google Scholar

[18]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

E. Lieb, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977) 185–194.  Google Scholar

[20]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[21]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[22]

I. MorozR. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.  doi: 10.1088/0264-9381/15/9/019.  Google Scholar

[23]

V. Moroz and J. V. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[24]

V. Moroz and J. V. Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains}, J. Differential Equations, 254 (2013), 3089-3145.  doi: 10.1016/j.jde.2012.12.019.  Google Scholar

[25]

S. Pekar, Untersuchungen über die Elekronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, New Jersey, 1970.  Google Scholar

[27]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[28]

D. Xu and Y. Lei, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89.  doi: 10.1016/j.aml.2014.12.007.  Google Scholar

[29]

W. Zhang and X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183.  doi: 10.1016/j.jmaa.2018.04.048.  Google Scholar

[1]

Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026

[2]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[3]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[4]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[5]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[6]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[7]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[8]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[9]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[10]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[11]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[12]

Dongyan Li, Yongzhong Wang. Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2601-2613. doi: 10.3934/cpaa.2013.12.2601

[13]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[14]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[15]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[16]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[17]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[18]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[19]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[20]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (40)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]