-
Previous Article
Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping
- CPAA Home
- This Issue
-
Next Article
Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain
Liouville theorems for an integral equation of Choquard type
1. | Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
2. | Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
$ u(x) = \int_{\mathbb{R}^n} \frac{u^{p-1}(y)}{|x-y|^{n-\alpha}} \int_{\mathbb{R}^n} \frac{u^p(z)}{|y-z|^{n-\beta}} dz dy, \quad x\in\mathbb{R}^n, $ |
$ 0<\alpha, \beta<n $ |
$ p>1 $ |
$ p $ |
$ H^{\frac{\alpha}{2}}(\mathbb{R}^n) $ |
$ (-\Delta)^{\frac{\alpha}{2}} u = \left(\frac{1}{|x|^{n-\beta}} * u^p\right) u^{p-1} \quad\text{ in } \mathbb{R}^n. $ |
References:
[1] |
D. Applebaum,
Lévy processes - from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[2] |
P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447–1476.
doi: 10.1142/S0218202515500384. |
[3] |
P. Belchior, H. Bueno, O. H. Miyagaki and G. A. Pereira,
Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53.
doi: 10.1016/j.na.2017.08.005. |
[4] |
J. Bertoin, Lévy Processes, Cambridge University Press, 1996. |
[5] |
J. P. Bouchard and A. Georges,
Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[6] |
L. Caffarelli and L. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[7] |
D. Cao and W. Dai,
Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
doi: 10.1017/prm.2018.67. |
[8] |
G. Caristi, L. D'Ambrosio and E. Mitidieri,
Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3. |
[9] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[10] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[11] |
W. Chen and C. Li,
Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[12] |
P. Constantin, Euler Equations, Navier-Stokes Equations and Turbulence, Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of lecture Notes in Math. 1–43, Springer, Berlin, 2006.
doi: 10.1007/11545989_1. |
[13] |
W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang,
Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117. |
[14] |
P. Le, Symmetry and classification of solutions to an integral equation of Choquard type, submitted for publication. |
[15] |
P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141.
doi: 10.1016/j.na.2019.03.006. |
[16] |
Y. Lei,
Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351-5377.
doi: 10.3934/dcds.2018236. |
[17] |
Y. Lei,
On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6. |
[18] |
E. Lieb,
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[19] |
E. Lieb, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977) 185–194. |
[20] |
S. Liu,
Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.
doi: 10.1016/j.na.2009.01.014. |
[21] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[22] |
I. Moroz, R. Penrose and P. Tod,
Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[23] |
V. Moroz and J. V. Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[24] |
V. Moroz and J. V. Schaftingen,
Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains}, J. Differential Equations, 254 (2013), 3089-3145.
doi: 10.1016/j.jde.2012.12.019. |
[25] |
S. Pekar, Untersuchungen über die Elekronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, New Jersey, 1970. |
[27] |
V. Tarasov and G. Zaslasvky,
Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.
doi: 10.1016/j.cnsns.2006.03.005. |
[28] |
D. Xu and Y. Lei,
Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89.
doi: 10.1016/j.aml.2014.12.007. |
[29] |
W. Zhang and X. Wu,
Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183.
doi: 10.1016/j.jmaa.2018.04.048. |
show all references
References:
[1] |
D. Applebaum,
Lévy processes - from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.
|
[2] |
P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447–1476.
doi: 10.1142/S0218202515500384. |
[3] |
P. Belchior, H. Bueno, O. H. Miyagaki and G. A. Pereira,
Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal., 164 (2017), 38-53.
doi: 10.1016/j.na.2017.08.005. |
[4] |
J. Bertoin, Lévy Processes, Cambridge University Press, 1996. |
[5] |
J. P. Bouchard and A. Georges,
Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[6] |
L. Caffarelli and L. Vasseur,
Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[7] |
D. Cao and W. Dai,
Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
doi: 10.1017/prm.2018.67. |
[8] |
G. Caristi, L. D'Ambrosio and E. Mitidieri,
Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3. |
[9] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[10] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[11] |
W. Chen and C. Li,
Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29B (2009), 949-960.
doi: 10.1016/S0252-9602(09)60079-5. |
[12] |
P. Constantin, Euler Equations, Navier-Stokes Equations and Turbulence, Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of lecture Notes in Math. 1–43, Springer, Berlin, 2006.
doi: 10.1007/11545989_1. |
[13] |
W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang,
Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117. |
[14] |
P. Le, Symmetry and classification of solutions to an integral equation of Choquard type, submitted for publication. |
[15] |
P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141.
doi: 10.1016/j.na.2019.03.006. |
[16] |
Y. Lei,
Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351-5377.
doi: 10.3934/dcds.2018236. |
[17] |
Y. Lei,
On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6. |
[18] |
E. Lieb,
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[19] |
E. Lieb, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977) 185–194. |
[20] |
S. Liu,
Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.
doi: 10.1016/j.na.2009.01.014. |
[21] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[22] |
I. Moroz, R. Penrose and P. Tod,
Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[23] |
V. Moroz and J. V. Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[24] |
V. Moroz and J. V. Schaftingen,
Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains}, J. Differential Equations, 254 (2013), 3089-3145.
doi: 10.1016/j.jde.2012.12.019. |
[25] |
S. Pekar, Untersuchungen über die Elekronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, New Jersey, 1970. |
[27] |
V. Tarasov and G. Zaslasvky,
Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.
doi: 10.1016/j.cnsns.2006.03.005. |
[28] |
D. Xu and Y. Lei,
Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Applied Math. Letters, 43 (2015), 85-89.
doi: 10.1016/j.aml.2014.12.007. |
[29] |
W. Zhang and X. Wu,
Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl., 464 (2018), 1167-1183.
doi: 10.1016/j.jmaa.2018.04.048. |
[1] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[2] |
César E. Torres Ledesma. Existence of positive solutions for a class of fractional Choquard equation in exterior domain. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3301-3328. doi: 10.3934/dcds.2022016 |
[3] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065 |
[4] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[5] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[6] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[7] |
Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131 |
[8] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4887-4919. doi: 10.3934/dcds.2021061 |
[9] |
Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865 |
[10] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016 |
[11] |
Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719 |
[12] |
Yuxia Guo, Shaolong Peng. Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1637-1648. doi: 10.3934/cpaa.2022037 |
[13] |
Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure and Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663 |
[14] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445 |
[15] |
De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431 |
[16] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[17] |
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129 |
[18] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1559-1600. doi: 10.3934/cpaa.2021033 |
[19] |
Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051 |
[20] |
Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure and Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]