• Previous Article
    Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic profile of solutions to a certain chemotaxis system
February  2020, 19(2): 923-939. doi: 10.3934/cpaa.2020042

Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

* Corresponding author: Jun Zhou

Received  February 2019 Revised  May 2019 Published  October 2019

Fund Project: The second author is supported by NSFC grant 11201380.

This paper concerns with a semilinear heat equation with singular potential and logarithmic nonlinearity. By using the logarithmic Sobolev inequality and a family of potential wells, the existence of global solutions and infinite time blow-up solutions are obtained. The results of this paper indicate that the polynomial nonlinearity is a critical condition of existence of finite time blow-up solutions to semilinear heat equation with singular potential.

Citation: Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259-293.  doi: 10.1007/s002050200201.  Google Scholar

[3]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2), 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473.  Google Scholar

[4]

K. Bouhali and F. Ellaggoune, Viscoelastic wave equation with logarithmic nonlinearities in $\Bbb R^n$, J. Partial Differ. Equ., 30 (2017), 47-63.  doi: 10.4208/jpde.v30.n1.4.  Google Scholar

[5]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[6]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations, second edition, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[8]

M. Feng and J. Zhou, Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential, J. Math. Anal. Appl., 464 (2018), 1213-1242.  doi: 10.1016/j.jmaa.2018.04.056.  Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[10]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990.   Google Scholar

[11]

Y. GigaS. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[12]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[13]

J. Hao and J. Zhou, A new blow-up condition for a parabolic equation with singular potential, J. Math. Anal. Appl., 449 (2017), 897-906.  doi: 10.1016/j.jmaa.2016.12.040.  Google Scholar

[14]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., 49 (1973), 503-505.   Google Scholar

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[16]

H. Hoshino and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-494.   Google Scholar

[17]

C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254.  doi: 10.1016/j.jmaa.2015.11.071.  Google Scholar

[18]

S. M. JiJ. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[19]

H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal., 137 (1997), 341-361.  doi: 10.1007/s002050050032.  Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, volume 14 of Graduate Studies in Mathematics, second edition, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[22]

H. L. LiuZ. S. Liu and Q. Z. Xiao, Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity, Appl. Math. Lett., 79 (2018), 176-181.  doi: 10.1016/j.aml.2017.12.015.  Google Scholar

[23]

Y. Q. Liu and W. K. Wang, Local well-posedness of a new integrable equation, Nonlinear Anal., 64 (2006), 2516-2526.  doi: 10.1016/j.na.2005.08.030.  Google Scholar

[24]

L. E. PayneG. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal., 69 (2008), 3495-3502.  doi: 10.1016/j.na.2007.09.035.  Google Scholar

[25]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[26]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.  doi: 10.1016/j.jmaa.2006.06.015.  Google Scholar

[27]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States, Birkhäuser Verlag, Basel, 2007.,  Google Scholar

[28]

M. Squassina and A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 54 (2015), 585-597.  doi: 10.1007/s00526-014-0796-8.  Google Scholar

[29]

Z. Tan, Non-Newton filtration equation with special medium void, Acta Math. Sci. Ser. B (Engl. Ed.), 24 (2004), 118-128.  doi: 10.1016/S0252-9602(17)30367-3.  Google Scholar

[30]

K. Tanaka and C. X. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Calc. Var. Partial Differential Equations, 56 (2017), 33. doi: 10.1007/s00526-017-1122-z.  Google Scholar

[31]

S. Y. Tian, Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity, J. Math. Anal. Appl., 454 (2017), 816-828.  doi: 10.1016/j.jmaa.2017.05.015.  Google Scholar

[32]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193.   Google Scholar

[33]

Y. Wang, The existence of global solution and the blowup problem for some $p$-Laplace heat equations, Acta Math. Sci. Ser. B (Engl. Ed.), 27 (2007), 274-282.  doi: 10.1016/S0252-9602(07)60026-5.  Google Scholar

[34]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[35]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

[36]

G. Y. Xu and J. Zhou, Global existence and blow-up of solutions to a singular non-Newton polytropic filtration equation with critical and supercritical initial energy, Commun. Pure Appl. Anal., 17 (2018), 1805-1820.  doi: 10.3934/cpaa.2018086.  Google Scholar

[37]

J. Zhou, A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void, Appl. Math. Lett., 30 (2014), 6-11.  doi: 10.1016/j.aml.2013.12.003.  Google Scholar

[38]

J. Zhou, Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content, Comput. Math. Appl., 71 (2016), 1163-1172.  doi: 10.1016/j.camwa.2016.01.029.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259-293.  doi: 10.1007/s002050200201.  Google Scholar

[3]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2), 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473.  Google Scholar

[4]

K. Bouhali and F. Ellaggoune, Viscoelastic wave equation with logarithmic nonlinearities in $\Bbb R^n$, J. Partial Differ. Equ., 30 (2017), 47-63.  doi: 10.4208/jpde.v30.n1.4.  Google Scholar

[5]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[6]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[7]

L. C. Evans, Partial Differential Equations, second edition, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[8]

M. Feng and J. Zhou, Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential, J. Math. Anal. Appl., 464 (2018), 1213-1242.  doi: 10.1016/j.jmaa.2018.04.056.  Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[10]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990.   Google Scholar

[11]

Y. GigaS. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[12]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[13]

J. Hao and J. Zhou, A new blow-up condition for a parabolic equation with singular potential, J. Math. Anal. Appl., 449 (2017), 897-906.  doi: 10.1016/j.jmaa.2016.12.040.  Google Scholar

[14]

K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., 49 (1973), 503-505.   Google Scholar

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[16]

H. Hoshino and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-494.   Google Scholar

[17]

C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254.  doi: 10.1016/j.jmaa.2015.11.071.  Google Scholar

[18]

S. M. JiJ. X. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[19]

H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal., 137 (1997), 341-361.  doi: 10.1007/s002050050032.  Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, volume 14 of Graduate Studies in Mathematics, second edition, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[22]

H. L. LiuZ. S. Liu and Q. Z. Xiao, Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity, Appl. Math. Lett., 79 (2018), 176-181.  doi: 10.1016/j.aml.2017.12.015.  Google Scholar

[23]

Y. Q. Liu and W. K. Wang, Local well-posedness of a new integrable equation, Nonlinear Anal., 64 (2006), 2516-2526.  doi: 10.1016/j.na.2005.08.030.  Google Scholar

[24]

L. E. PayneG. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal., 69 (2008), 3495-3502.  doi: 10.1016/j.na.2007.09.035.  Google Scholar

[25]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[26]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.  doi: 10.1016/j.jmaa.2006.06.015.  Google Scholar

[27]

P. Quittner and P. Souplet, Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States, Birkhäuser Verlag, Basel, 2007.,  Google Scholar

[28]

M. Squassina and A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 54 (2015), 585-597.  doi: 10.1007/s00526-014-0796-8.  Google Scholar

[29]

Z. Tan, Non-Newton filtration equation with special medium void, Acta Math. Sci. Ser. B (Engl. Ed.), 24 (2004), 118-128.  doi: 10.1016/S0252-9602(17)30367-3.  Google Scholar

[30]

K. Tanaka and C. X. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Calc. Var. Partial Differential Equations, 56 (2017), 33. doi: 10.1007/s00526-017-1122-z.  Google Scholar

[31]

S. Y. Tian, Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity, J. Math. Anal. Appl., 454 (2017), 816-828.  doi: 10.1016/j.jmaa.2017.05.015.  Google Scholar

[32]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193.   Google Scholar

[33]

Y. Wang, The existence of global solution and the blowup problem for some $p$-Laplace heat equations, Acta Math. Sci. Ser. B (Engl. Ed.), 27 (2007), 274-282.  doi: 10.1016/S0252-9602(07)60026-5.  Google Scholar

[34]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Funct. Anal., 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[35]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.  doi: 10.1007/BF02761845.  Google Scholar

[36]

G. Y. Xu and J. Zhou, Global existence and blow-up of solutions to a singular non-Newton polytropic filtration equation with critical and supercritical initial energy, Commun. Pure Appl. Anal., 17 (2018), 1805-1820.  doi: 10.3934/cpaa.2018086.  Google Scholar

[37]

J. Zhou, A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void, Appl. Math. Lett., 30 (2014), 6-11.  doi: 10.1016/j.aml.2013.12.003.  Google Scholar

[38]

J. Zhou, Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content, Comput. Math. Appl., 71 (2016), 1163-1172.  doi: 10.1016/j.camwa.2016.01.029.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[11]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[19]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[20]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (239)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]