• Previous Article
    Dissipative nonlinear schrödinger equations for large data in one space dimension
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity
February  2020, 19(2): 941-966. doi: 10.3934/cpaa.2020043

Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

* Corresponding author

Received  February 2019 Revised  May 2019 Published  October 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (No.11671188) and the Fundamental Research Funds for the Central Universities (No.201861002, 201964008).

A transmission problem for Kirchhoff-type wave equations with nonlinear damping and delay term in the internal feedback is considered under a memory condition on one part of the boundary. By virtue of multiplier method, Faedo-Galerkin approximation and energy perturbation technique, we establish the appropriate conditions to guarantee the existence of global solution, and derive a general decay estimate of the energy, which includes exponential, algebraic and logarithmic decay etc.

Citation: Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043
References:
[1]

K. AmmariS. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Syst. Control Lett., 59 (2010), 623-628.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[2]

D. Andrade, L. H. Fatori and J. E. Muñoz Rivera, Nonlinear transmission problem with a dissipative boundary condition of memory type, Electron. J. Differ. Eq., 2006 (2006), 16 pages.  Google Scholar

[3]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type Ⅲ with viscoelastic dampingand delay term, Electron. J. Differ. Equations, 2012 (2012), 15 pages.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition onthe boundary, Nonlinear Anal-Theor., 61 (2005), 351-372.  doi: 10.1016/j.na.2004.11.014.  Google Scholar

[6]

J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919.  doi: 10.1007/s10440-009-9485-6.  Google Scholar

[7]

W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differ. Eq., 2007 (2007), 10 pages.  Google Scholar

[8]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 26 pages. doi: 10.1504/IJDSDE.2014.067080.  Google Scholar

[9]

A. Benaissa and N. Louhibi, Global existence and energy decay of solutions to a nonlinear wave equation with a delay term, Georgian Math. J., 20(1) (2013), 24 pages. doi: 10.1515/gmj-2013-0006.  Google Scholar

[10]

A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, Electron. J. Differ. Eq., 2014 (2014), 11 pages.  Google Scholar

[11]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004 (2004), 10 pages.  Google Scholar

[12]

M. M. Cavalcanti, E. R. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., (2018), to appear. doi: 10.1007/s00245-018-9514-9.  Google Scholar

[13]

M. M. CavalcantiV. N. Domingos CavalcantiJ. S. Prates Filho and J. A. Soriano, Existence and uniformdecay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal-Theor., 38 (1999), 281-294.  doi: 10.1016/S0362-546X(98)00195-3.  Google Scholar

[14]

M. M. CavalcantiV. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.  doi: 10.1016/S0096-3003(03)00284-4.  Google Scholar

[15]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002 (2002), 14 pages.  Google Scholar

[16]

Z. Chen, W. Liu and D. Chen, General decay rates for a laminated beam with memory, Taiwan. J. Math., to appear. doi: 10.11650/tjm/181109.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[19]

R. Dautray and J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques, Masson, Paris, 1984.  Google Scholar

[20]

L. Djilali and A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637-2660.  doi: 10.1080/00036811.2015.1105961.  Google Scholar

[21]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.  Google Scholar

[22]

B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 10 pages. doi: 10.1155/2015/585021.  Google Scholar

[23]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[24]

G. Li, D. Wang and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differ. Eq., 2016 (2016), 21 pages.  Google Scholar

[25]

J. Li and S. Chai, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback, J. Math. Anal. Appl., 443 (2016), 981-1006.  doi: 10.1016/j.jmaa.2016.05.060.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 68 pages. doi: 10.1137/1030001.  Google Scholar

[27]

G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.  Google Scholar

[28]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., DOI: 10.1080/00036811.2019.1577390 doi: 10.1080/00036811.2019.1577390.  Google Scholar

[29]

W. LiuD. Wang and D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758-775.   Google Scholar

[30]

W. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math.Optim., 80 (2019), 103-133.  doi: 10.1007/s00245-017-9460-y.  Google Scholar

[31]

W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. doi: 10.1063/1.4799929.  Google Scholar

[32]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, App. Math. Lett., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[33]

A. MarzocchiJ. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Method. Appl. Sci., 25 (2002), 955-980.  doi: 10.1002/mma.323.  Google Scholar

[34]

A. Marzocchi and M. G. Naso, Transmission problem in thermoelasticity with symmetry, IMA J. Appl. Math., 68 (2003), 23-46.  doi: 10.1093/imamat/68.1.23.  Google Scholar

[35]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 21 pages. doi: 10.1023/A:1006449032100.  Google Scholar

[36]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958.   Google Scholar

[38]

J. Y. ParkJ. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinearboundary damping and memory term, Nonlinear Anal-Theor., 50 (2002), 871-884.  doi: 10.1016/S0362-546X(01)00781-7.  Google Scholar

[39]

S. H. Park, General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition, Acta Math. Sci., 34 (2014), 1395-1403.  doi: 10.1016/S0252-9602(14)60091-6.  Google Scholar

[40]

S. H. Park, Stability of a transmission problem for Kirchhoff type wave equations with memory on the boundary, Math. Method. Appl. Sci., 40 (2017), 3528-3537.  doi: 10.1002/mma.4242.  Google Scholar

[41]

M. L. SantosJ. FerreiraD. C. Pereira and C. A. Raposo, Global existence and stability for the wave equationof Kirchhoff type with memory condition at the boundary, Nonlinear Anal-Theor., 54 (2003), 959-976.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146(4) (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[43]

D. WangG. Li and B. Zhu, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay, J. Nonlinear Sci. Appl., 9 (2016), 1202-1215.  doi: 10.22436/jnsa.009.03.46.  Google Scholar

[44]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[45]

Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal-Theor., 11 (1987), 1155-1168.  doi: 10.1016/0362-546X(87)90004-6.  Google Scholar

show all references

References:
[1]

K. AmmariS. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Syst. Control Lett., 59 (2010), 623-628.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[2]

D. Andrade, L. H. Fatori and J. E. Muñoz Rivera, Nonlinear transmission problem with a dissipative boundary condition of memory type, Electron. J. Differ. Eq., 2006 (2006), 16 pages.  Google Scholar

[3]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type Ⅲ with viscoelastic dampingand delay term, Electron. J. Differ. Equations, 2012 (2012), 15 pages.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition onthe boundary, Nonlinear Anal-Theor., 61 (2005), 351-372.  doi: 10.1016/j.na.2004.11.014.  Google Scholar

[6]

J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919.  doi: 10.1007/s10440-009-9485-6.  Google Scholar

[7]

W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differ. Eq., 2007 (2007), 10 pages.  Google Scholar

[8]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 26 pages. doi: 10.1504/IJDSDE.2014.067080.  Google Scholar

[9]

A. Benaissa and N. Louhibi, Global existence and energy decay of solutions to a nonlinear wave equation with a delay term, Georgian Math. J., 20(1) (2013), 24 pages. doi: 10.1515/gmj-2013-0006.  Google Scholar

[10]

A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, Electron. J. Differ. Eq., 2014 (2014), 11 pages.  Google Scholar

[11]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004 (2004), 10 pages.  Google Scholar

[12]

M. M. Cavalcanti, E. R. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., (2018), to appear. doi: 10.1007/s00245-018-9514-9.  Google Scholar

[13]

M. M. CavalcantiV. N. Domingos CavalcantiJ. S. Prates Filho and J. A. Soriano, Existence and uniformdecay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal-Theor., 38 (1999), 281-294.  doi: 10.1016/S0362-546X(98)00195-3.  Google Scholar

[14]

M. M. CavalcantiV. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.  doi: 10.1016/S0096-3003(03)00284-4.  Google Scholar

[15]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002 (2002), 14 pages.  Google Scholar

[16]

Z. Chen, W. Liu and D. Chen, General decay rates for a laminated beam with memory, Taiwan. J. Math., to appear. doi: 10.11650/tjm/181109.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[19]

R. Dautray and J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques, Masson, Paris, 1984.  Google Scholar

[20]

L. Djilali and A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637-2660.  doi: 10.1080/00036811.2015.1105961.  Google Scholar

[21]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.  Google Scholar

[22]

B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 10 pages. doi: 10.1155/2015/585021.  Google Scholar

[23]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[24]

G. Li, D. Wang and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differ. Eq., 2016 (2016), 21 pages.  Google Scholar

[25]

J. Li and S. Chai, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback, J. Math. Anal. Appl., 443 (2016), 981-1006.  doi: 10.1016/j.jmaa.2016.05.060.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 68 pages. doi: 10.1137/1030001.  Google Scholar

[27]

G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.  Google Scholar

[28]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., DOI: 10.1080/00036811.2019.1577390 doi: 10.1080/00036811.2019.1577390.  Google Scholar

[29]

W. LiuD. Wang and D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758-775.   Google Scholar

[30]

W. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math.Optim., 80 (2019), 103-133.  doi: 10.1007/s00245-017-9460-y.  Google Scholar

[31]

W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. doi: 10.1063/1.4799929.  Google Scholar

[32]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, App. Math. Lett., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[33]

A. MarzocchiJ. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Method. Appl. Sci., 25 (2002), 955-980.  doi: 10.1002/mma.323.  Google Scholar

[34]

A. Marzocchi and M. G. Naso, Transmission problem in thermoelasticity with symmetry, IMA J. Appl. Math., 68 (2003), 23-46.  doi: 10.1093/imamat/68.1.23.  Google Scholar

[35]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 21 pages. doi: 10.1023/A:1006449032100.  Google Scholar

[36]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958.   Google Scholar

[38]

J. Y. ParkJ. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinearboundary damping and memory term, Nonlinear Anal-Theor., 50 (2002), 871-884.  doi: 10.1016/S0362-546X(01)00781-7.  Google Scholar

[39]

S. H. Park, General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition, Acta Math. Sci., 34 (2014), 1395-1403.  doi: 10.1016/S0252-9602(14)60091-6.  Google Scholar

[40]

S. H. Park, Stability of a transmission problem for Kirchhoff type wave equations with memory on the boundary, Math. Method. Appl. Sci., 40 (2017), 3528-3537.  doi: 10.1002/mma.4242.  Google Scholar

[41]

M. L. SantosJ. FerreiraD. C. Pereira and C. A. Raposo, Global existence and stability for the wave equationof Kirchhoff type with memory condition at the boundary, Nonlinear Anal-Theor., 54 (2003), 959-976.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146(4) (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[43]

D. WangG. Li and B. Zhu, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay, J. Nonlinear Sci. Appl., 9 (2016), 1202-1215.  doi: 10.22436/jnsa.009.03.46.  Google Scholar

[44]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[45]

Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal-Theor., 11 (1987), 1155-1168.  doi: 10.1016/0362-546X(87)90004-6.  Google Scholar

Figure 1.  An example of $ \Omega $
[1]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[8]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[11]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[12]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[13]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[14]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[15]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[16]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[17]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[20]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (208)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]