\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term

  • * Corresponding author

    * Corresponding author

This work is supported by the National Natural Science Foundation of China (No.11671188) and the Fundamental Research Funds for the Central Universities (No.201861002, 201964008).

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • A transmission problem for Kirchhoff-type wave equations with nonlinear damping and delay term in the internal feedback is considered under a memory condition on one part of the boundary. By virtue of multiplier method, Faedo-Galerkin approximation and energy perturbation technique, we establish the appropriate conditions to guarantee the existence of global solution, and derive a general decay estimate of the energy, which includes exponential, algebraic and logarithmic decay etc.

    Mathematics Subject Classification: Primary: 35B40, 35L53; Secondary: 93D15, 93D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An example of $ \Omega $

  • [1] K. AmmariS. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Syst. Control Lett., 59 (2010), 623-628.  doi: 10.1016/j.sysconle.2010.07.007.
    [2] D. Andrade, L. H. Fatori and J. E. Muñoz Rivera, Nonlinear transmission problem with a dissipative boundary condition of memory type, Electron. J. Differ. Eq., 2006 (2006), 16 pages.
    [3] T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type Ⅲ with viscoelastic dampingand delay term, Electron. J. Differ. Equations, 2012 (2012), 15 pages.
    [4] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
    [5] J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition onthe boundary, Nonlinear Anal-Theor., 61 (2005), 351-372.  doi: 10.1016/j.na.2004.11.014.
    [6] J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919.  doi: 10.1007/s10440-009-9485-6.
    [7] W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differ. Eq., 2007 (2007), 10 pages.
    [8] A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 26 pages. doi: 10.1504/IJDSDE.2014.067080.
    [9] A. Benaissa and N. Louhibi, Global existence and energy decay of solutions to a nonlinear wave equation with a delay term, Georgian Math. J., 20(1) (2013), 24 pages. doi: 10.1515/gmj-2013-0006.
    [10] A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, Electron. J. Differ. Eq., 2014 (2014), 11 pages.
    [11] S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004 (2004), 10 pages.
    [12] M. M. Cavalcanti, E. R. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., (2018), to appear. doi: 10.1007/s00245-018-9514-9.
    [13] M. M. CavalcantiV. N. Domingos CavalcantiJ. S. Prates Filho and J. A. Soriano, Existence and uniformdecay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal-Theor., 38 (1999), 281-294.  doi: 10.1016/S0362-546X(98)00195-3.
    [14] M. M. CavalcantiV. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.  doi: 10.1016/S0096-3003(03)00284-4.
    [15] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002 (2002), 14 pages.
    [16] Z. Chen, W. Liu and D. Chen, General decay rates for a laminated beam with memory, Taiwan. J. Math., to appear. doi: 10.11650/tjm/181109.
    [17] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.
    [18] R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.
    [19] R. Dautray and J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques, Masson, Paris, 1984.
    [20] L. Djilali and A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637-2660.  doi: 10.1080/00036811.2015.1105961.
    [21] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.
    [22] B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 10 pages. doi: 10.1155/2015/585021.
    [23] M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.
    [24] G. Li, D. Wang and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differ. Eq., 2016 (2016), 21 pages.
    [25] J. Li and S. Chai, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback, J. Math. Anal. Appl., 443 (2016), 981-1006.  doi: 10.1016/j.jmaa.2016.05.060.
    [26] J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 68 pages. doi: 10.1137/1030001.
    [27] G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.
    [28] W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., DOI: 10.1080/00036811.2019.1577390 doi: 10.1080/00036811.2019.1577390.
    [29] W. LiuD. Wang and D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758-775. 
    [30] W. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math.Optim., 80 (2019), 103-133.  doi: 10.1007/s00245-017-9460-y.
    [31] W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. doi: 10.1063/1.4799929.
    [32] T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, App. Math. Lett., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1.
    [33] A. MarzocchiJ. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Method. Appl. Sci., 25 (2002), 955-980.  doi: 10.1002/mma.323.
    [34] A. Marzocchi and M. G. Naso, Transmission problem in thermoelasticity with symmetry, IMA J. Appl. Math., 68 (2003), 23-46.  doi: 10.1093/imamat/68.1.23.
    [35] J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 21 pages. doi: 10.1023/A:1006449032100.
    [36] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.
    [37] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958. 
    [38] J. Y. ParkJ. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinearboundary damping and memory term, Nonlinear Anal-Theor., 50 (2002), 871-884.  doi: 10.1016/S0362-546X(01)00781-7.
    [39] S. H. Park, General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition, Acta Math. Sci., 34 (2014), 1395-1403.  doi: 10.1016/S0252-9602(14)60091-6.
    [40] S. H. Park, Stability of a transmission problem for Kirchhoff type wave equations with memory on the boundary, Math. Method. Appl. Sci., 40 (2017), 3528-3537.  doi: 10.1002/mma.4242.
    [41] M. L. SantosJ. FerreiraD. C. Pereira and C. A. Raposo, Global existence and stability for the wave equationof Kirchhoff type with memory condition at the boundary, Nonlinear Anal-Theor., 54 (2003), 959-976.  doi: 10.1016/S0362-546X(03)00121-4.
    [42] J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146(4) (1987), 65-96.  doi: 10.1007/BF01762360.
    [43] D. WangG. Li and B. Zhu, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay, J. Nonlinear Sci. Appl., 9 (2016), 1202-1215.  doi: 10.22436/jnsa.009.03.46.
    [44] G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.
    [45] Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal-Theor., 11 (1987), 1155-1168.  doi: 10.1016/0362-546X(87)90004-6.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(2576) PDF downloads(433) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return