• Previous Article
    Dissipative nonlinear schrödinger equations for large data in one space dimension
  • CPAA Home
  • This Issue
  • Next Article
    Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity
February  2020, 19(2): 941-966. doi: 10.3934/cpaa.2020043

Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China

* Corresponding author

Received  February 2019 Revised  May 2019 Published  October 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (No.11671188) and the Fundamental Research Funds for the Central Universities (No.201861002, 201964008)

A transmission problem for Kirchhoff-type wave equations with nonlinear damping and delay term in the internal feedback is considered under a memory condition on one part of the boundary. By virtue of multiplier method, Faedo-Galerkin approximation and energy perturbation technique, we establish the appropriate conditions to guarantee the existence of global solution, and derive a general decay estimate of the energy, which includes exponential, algebraic and logarithmic decay etc.

Citation: Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043
References:
[1]

K. AmmariS. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Syst. Control Lett., 59 (2010), 623-628.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[2]

D. Andrade, L. H. Fatori and J. E. Muñoz Rivera, Nonlinear transmission problem with a dissipative boundary condition of memory type, Electron. J. Differ. Eq., 2006 (2006), 16 pages.  Google Scholar

[3]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type Ⅲ with viscoelastic dampingand delay term, Electron. J. Differ. Equations, 2012 (2012), 15 pages.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition onthe boundary, Nonlinear Anal-Theor., 61 (2005), 351-372.  doi: 10.1016/j.na.2004.11.014.  Google Scholar

[6]

J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919.  doi: 10.1007/s10440-009-9485-6.  Google Scholar

[7]

W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differ. Eq., 2007 (2007), 10 pages.  Google Scholar

[8]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 26 pages. doi: 10.1504/IJDSDE.2014.067080.  Google Scholar

[9]

A. Benaissa and N. Louhibi, Global existence and energy decay of solutions to a nonlinear wave equation with a delay term, Georgian Math. J., 20(1) (2013), 24 pages. doi: 10.1515/gmj-2013-0006.  Google Scholar

[10]

A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, Electron. J. Differ. Eq., 2014 (2014), 11 pages.  Google Scholar

[11]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004 (2004), 10 pages.  Google Scholar

[12]

M. M. Cavalcanti, E. R. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., (2018), to appear. doi: 10.1007/s00245-018-9514-9.  Google Scholar

[13]

M. M. CavalcantiV. N. Domingos CavalcantiJ. S. Prates Filho and J. A. Soriano, Existence and uniformdecay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal-Theor., 38 (1999), 281-294.  doi: 10.1016/S0362-546X(98)00195-3.  Google Scholar

[14]

M. M. CavalcantiV. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.  doi: 10.1016/S0096-3003(03)00284-4.  Google Scholar

[15]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002 (2002), 14 pages.  Google Scholar

[16]

Z. Chen, W. Liu and D. Chen, General decay rates for a laminated beam with memory, Taiwan. J. Math., to appear. doi: 10.11650/tjm/181109.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[19]

R. Dautray and J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques, Masson, Paris, 1984.  Google Scholar

[20]

L. Djilali and A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637-2660.  doi: 10.1080/00036811.2015.1105961.  Google Scholar

[21]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.  Google Scholar

[22]

B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 10 pages. doi: 10.1155/2015/585021.  Google Scholar

[23]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[24]

G. Li, D. Wang and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differ. Eq., 2016 (2016), 21 pages.  Google Scholar

[25]

J. Li and S. Chai, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback, J. Math. Anal. Appl., 443 (2016), 981-1006.  doi: 10.1016/j.jmaa.2016.05.060.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 68 pages. doi: 10.1137/1030001.  Google Scholar

[27]

G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.  Google Scholar

[28]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., DOI: 10.1080/00036811.2019.1577390 doi: 10.1080/00036811.2019.1577390.  Google Scholar

[29]

W. LiuD. Wang and D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758-775.   Google Scholar

[30]

W. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math.Optim., 80 (2019), 103-133.  doi: 10.1007/s00245-017-9460-y.  Google Scholar

[31]

W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. doi: 10.1063/1.4799929.  Google Scholar

[32]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, App. Math. Lett., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[33]

A. MarzocchiJ. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Method. Appl. Sci., 25 (2002), 955-980.  doi: 10.1002/mma.323.  Google Scholar

[34]

A. Marzocchi and M. G. Naso, Transmission problem in thermoelasticity with symmetry, IMA J. Appl. Math., 68 (2003), 23-46.  doi: 10.1093/imamat/68.1.23.  Google Scholar

[35]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 21 pages. doi: 10.1023/A:1006449032100.  Google Scholar

[36]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958.   Google Scholar

[38]

J. Y. ParkJ. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinearboundary damping and memory term, Nonlinear Anal-Theor., 50 (2002), 871-884.  doi: 10.1016/S0362-546X(01)00781-7.  Google Scholar

[39]

S. H. Park, General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition, Acta Math. Sci., 34 (2014), 1395-1403.  doi: 10.1016/S0252-9602(14)60091-6.  Google Scholar

[40]

S. H. Park, Stability of a transmission problem for Kirchhoff type wave equations with memory on the boundary, Math. Method. Appl. Sci., 40 (2017), 3528-3537.  doi: 10.1002/mma.4242.  Google Scholar

[41]

M. L. SantosJ. FerreiraD. C. Pereira and C. A. Raposo, Global existence and stability for the wave equationof Kirchhoff type with memory condition at the boundary, Nonlinear Anal-Theor., 54 (2003), 959-976.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146(4) (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[43]

D. WangG. Li and B. Zhu, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay, J. Nonlinear Sci. Appl., 9 (2016), 1202-1215.  doi: 10.22436/jnsa.009.03.46.  Google Scholar

[44]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[45]

Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal-Theor., 11 (1987), 1155-1168.  doi: 10.1016/0362-546X(87)90004-6.  Google Scholar

show all references

References:
[1]

K. AmmariS. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, Syst. Control Lett., 59 (2010), 623-628.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[2]

D. Andrade, L. H. Fatori and J. E. Muñoz Rivera, Nonlinear transmission problem with a dissipative boundary condition of memory type, Electron. J. Differ. Eq., 2006 (2006), 16 pages.  Google Scholar

[3]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type Ⅲ with viscoelastic dampingand delay term, Electron. J. Differ. Equations, 2012 (2012), 15 pages.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition onthe boundary, Nonlinear Anal-Theor., 61 (2005), 351-372.  doi: 10.1016/j.na.2004.11.014.  Google Scholar

[6]

J. J. Bae, Nonlinear transmission problem for wave equation with boundary condition of memory type, Acta Appl. Math., 110 (2010), 907-919.  doi: 10.1007/s10440-009-9485-6.  Google Scholar

[7]

W. D. Bastos and C. A. Raposo, Transmission problem for waves with frictional damping, Electron. J. Differ. Eq., 2007 (2007), 10 pages.  Google Scholar

[8]

A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 26 pages. doi: 10.1504/IJDSDE.2014.067080.  Google Scholar

[9]

A. Benaissa and N. Louhibi, Global existence and energy decay of solutions to a nonlinear wave equation with a delay term, Georgian Math. J., 20(1) (2013), 24 pages. doi: 10.1515/gmj-2013-0006.  Google Scholar

[10]

A. Benseghir, Existence and exponential decay of solutions for transmission problems with delay, Electron. J. Differ. Eq., 2014 (2014), 11 pages.  Google Scholar

[11]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004 (2004), 10 pages.  Google Scholar

[12]

M. M. Cavalcanti, E. R. Coelho and V. N. D. Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., (2018), to appear. doi: 10.1007/s00245-018-9514-9.  Google Scholar

[13]

M. M. CavalcantiV. N. Domingos CavalcantiJ. S. Prates Filho and J. A. Soriano, Existence and uniformdecay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal-Theor., 38 (1999), 281-294.  doi: 10.1016/S0362-546X(98)00195-3.  Google Scholar

[14]

M. M. CavalcantiV. N. Domingos Cavalcanti and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput., 150 (2004), 439-465.  doi: 10.1016/S0096-3003(03)00284-4.  Google Scholar

[15]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002 (2002), 14 pages.  Google Scholar

[16]

Z. Chen, W. Liu and D. Chen, General decay rates for a laminated beam with memory, Taiwan. J. Math., to appear. doi: 10.11650/tjm/181109.  Google Scholar

[17]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.  Google Scholar

[18]

R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.  Google Scholar

[19]

R. Dautray and J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les techniques, Masson, Paris, 1984.  Google Scholar

[20]

L. Djilali and A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637-2660.  doi: 10.1080/00036811.2015.1105961.  Google Scholar

[21]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, RGMIA Monographs, Victoria University, Australia, 2002.  Google Scholar

[22]

B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 10 pages. doi: 10.1155/2015/585021.  Google Scholar

[23]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[24]

G. Li, D. Wang and B. Zhu, Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differ. Eq., 2016 (2016), 21 pages.  Google Scholar

[25]

J. Li and S. Chai, Existence and energy decay rates of solutions to the variable-coefficient Euler-Bernoulli plate with a delay in localized nonlinear internal feedback, J. Math. Anal. Appl., 443 (2016), 981-1006.  doi: 10.1016/j.jmaa.2016.05.060.  Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 68 pages. doi: 10.1137/1030001.  Google Scholar

[27]

G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.  Google Scholar

[28]

W. Liu, Z. Chen and D. Chen, New general decay results for a Moore-Gibson-Thompson equation with memory, Appl. Anal., DOI: 10.1080/00036811.2019.1577390 doi: 10.1080/00036811.2019.1577390.  Google Scholar

[29]

W. LiuD. Wang and D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758-775.   Google Scholar

[30]

W. Liu and W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math.Optim., 80 (2019), 103-133.  doi: 10.1007/s00245-017-9460-y.  Google Scholar

[31]

W. J. Liu, General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback, J. Math. Phys., 54 (2013), 9 pages. doi: 10.1063/1.4799929.  Google Scholar

[32]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, App. Math. Lett., 16 (2003), 243-248.  doi: 10.1016/S0893-9659(03)80038-1.  Google Scholar

[33]

A. MarzocchiJ. E. Muñoz Rivera and M. G. Naso, Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Method. Appl. Sci., 25 (2002), 955-980.  doi: 10.1002/mma.323.  Google Scholar

[34]

A. Marzocchi and M. G. Naso, Transmission problem in thermoelasticity with symmetry, IMA J. Appl. Math., 68 (2003), 23-46.  doi: 10.1093/imamat/68.1.23.  Google Scholar

[35]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 21 pages. doi: 10.1023/A:1006449032100.  Google Scholar

[36]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935-958.   Google Scholar

[38]

J. Y. ParkJ. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinearboundary damping and memory term, Nonlinear Anal-Theor., 50 (2002), 871-884.  doi: 10.1016/S0362-546X(01)00781-7.  Google Scholar

[39]

S. H. Park, General decay of a transmission problem for Kirchhoff type wave equations with boundary memory condition, Acta Math. Sci., 34 (2014), 1395-1403.  doi: 10.1016/S0252-9602(14)60091-6.  Google Scholar

[40]

S. H. Park, Stability of a transmission problem for Kirchhoff type wave equations with memory on the boundary, Math. Method. Appl. Sci., 40 (2017), 3528-3537.  doi: 10.1002/mma.4242.  Google Scholar

[41]

M. L. SantosJ. FerreiraD. C. Pereira and C. A. Raposo, Global existence and stability for the wave equationof Kirchhoff type with memory condition at the boundary, Nonlinear Anal-Theor., 54 (2003), 959-976.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[42]

J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura Appl., 146(4) (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[43]

D. WangG. Li and B. Zhu, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay, J. Nonlinear Sci. Appl., 9 (2016), 1202-1215.  doi: 10.22436/jnsa.009.03.46.  Google Scholar

[44]

G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.  Google Scholar

[45]

Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Anal-Theor., 11 (1987), 1155-1168.  doi: 10.1016/0362-546X(87)90004-6.  Google Scholar

Figure 1.  An example of $ \Omega $
[1]

Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445

[2]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[3]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[4]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[5]

Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351

[6]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[7]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[8]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[9]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[10]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[11]

Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645

[12]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[13]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[14]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

Ammar Khemmoudj, Yacine Mokhtari. General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3839-3866. doi: 10.3934/dcds.2019155

[17]

Jerry L. Bona, Laihan Luo. More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 151-193. doi: 10.3934/dcds.1995.1.151

[18]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[19]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[20]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (41)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]