• Previous Article
    The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem
  • CPAA Home
  • This Issue
  • Next Article
    Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term
February  2020, 19(2): 967-981. doi: 10.3934/cpaa.2020044

Dissipative nonlinear schrödinger equations for large data in one space dimension

Tokyo Denki University, Division of Science, Hatoyama, Saitama, 350-0394, Japan

Received  February 2019 Revised  June 2019 Published  October 2019

In this study, we consider the global Cauchy problem for the nonlinear Schrödinger equations with a dissipative nonlinearity in one space dimension. In particular, we show the global existence, smoothing effect and asymptotic behavior for solutions to the nonlinear Schrödinger equations with data which belong to $ \mathcal{F}H^\gamma, $ $ 1/2<\gamma\leq 1. $ In the proof of main theorem, we introduce a priori estimate for $ H^\gamma $-type norm and the condition $ \mathcal{F}H^1 $ for data relaxed into $ \mathcal{F}H^\gamma, $ $ 1/2<\gamma\leq1. $

Citation: Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure & Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044
References:
[1]

H. Bahouri, J-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. E. Barab, Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.  doi: 10.1063/1.526074.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Math., 10, Amer. Math. Soc., 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions $n\geq2$, vCommun. Math. Phys., 151 (1993), 619-645.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrodinger equations. Ⅰ: The Cauchy problem, J. Funct. Anal., 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[6]

N. Hayashi, C. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical field, Adv. Math. Phys., (2016), 3702738. doi: 10.1155/2016/3702738.  Google Scholar

[7]

N. Hayashi, C. Li and P. I. Naumkin, Dissipative nonlinear Schrödinger equations with singular data, J. Appl. Computat. Math, 5 (2016), 1000304. Google Scholar

[8]

N. HayashiK. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z., 192 (1986), 637-650.  doi: 10.1007/BF01162710.  Google Scholar

[9]

N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.   Google Scholar

[10]

G. JinY. Jin and C. Li, The initial value problem for nonlinear Schrödinger equations with a dissipative nonlinearity in one space dimension, J. Evol. Equ., 16 (2016), 983-995.  doi: 10.1007/s00028-016-0327-5.  Google Scholar

[11]

S. KatayamaC. Li and H. Sunagawa, A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D, Differ. Int. Equ., 27 (2014), 310-312.   Google Scholar

[12]

J. Kato and F. Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Int. Equ., 24 (2011), 923-940.   Google Scholar

[13]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., 46 (1987), 113-129.   Google Scholar

[14]

T. Kato, On nonlinear Schrödinger equations, Ⅱ. $H^s$-solutions and unconditional well-posedness, J. d'Anal. Math., 67 (1995), 281-306.  doi: 10.1007/BF02787794.  Google Scholar

[15]

N. Kita and A. Shimomura, Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity, J. Differ. Equ., 242 (2007), 192–210. doi: 10.1016/j.jde.2007.07.003.  Google Scholar

[16]

N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.   Google Scholar

[17]

C. Li and N. Hayashi, Critical nonlinear Schrödinger equations with data in homogeneous weighted $\mathbf{L}^2$ spaces, J. Math. Anal. Appl., 419 (2014), 1214-1234.  doi: 10.1016/j.jmaa.2014.05.053.  Google Scholar

[18]

C. Li and H. Sunagawa, On Schrödinger systems with cubic dissipative nonlinearities of derivative type, Nonlinearity, 29 (2016), 1537-1563.  doi: 10.1088/0951-7715/29/5/1537.  Google Scholar

[19]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2nd edn., Springer, New York, 2015 doi: 10.1007/978-1-4939-2181-2.  Google Scholar

[20]

V. A. Liskevich and M. A. Perelmuter, Analyticity of submarkovian semigroups, Amer. Math. Soc., 123 (1995), 1097-1104.  doi: 10.2307/2160706.  Google Scholar

[21]

T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., 139 (1991), 479-493.   Google Scholar

[22]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var., 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.  Google Scholar

[23]

Y. SagawaH. Sunagawa and S. Yasuda, A sharp lower bound for the life span of small solutions to the Schödinger equation with a subcritical power nonlinearity, Differ. Int. Equ., 31 (2018), 685-700.   Google Scholar

[24]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Commun. Partial Differ. Equ., 31 (2006), 1407-1423.  doi: 10.1080/03605300600910316.  Google Scholar

[25]

W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, Reidel, Dordrecht, Holland, (1974), 53–78. Google Scholar

[26]

C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation: Self-focusing and wave collapse, Appl. Math. Sci., 139 Springer, 1999.  Google Scholar

[27]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial Ekvac., 30 (1987), 115-125.   Google Scholar

[28]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys., 110 (1987), 415-426.   Google Scholar

show all references

References:
[1]

H. Bahouri, J-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J. E. Barab, Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.  doi: 10.1063/1.526074.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Math., 10, Amer. Math. Soc., 2003. doi: 10.1090/cln/010.  Google Scholar

[4]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions $n\geq2$, vCommun. Math. Phys., 151 (1993), 619-645.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrodinger equations. Ⅰ: The Cauchy problem, J. Funct. Anal., 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[6]

N. Hayashi, C. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical field, Adv. Math. Phys., (2016), 3702738. doi: 10.1155/2016/3702738.  Google Scholar

[7]

N. Hayashi, C. Li and P. I. Naumkin, Dissipative nonlinear Schrödinger equations with singular data, J. Appl. Computat. Math, 5 (2016), 1000304. Google Scholar

[8]

N. HayashiK. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension, Math. Z., 192 (1986), 637-650.  doi: 10.1007/BF01162710.  Google Scholar

[9]

N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.   Google Scholar

[10]

G. JinY. Jin and C. Li, The initial value problem for nonlinear Schrödinger equations with a dissipative nonlinearity in one space dimension, J. Evol. Equ., 16 (2016), 983-995.  doi: 10.1007/s00028-016-0327-5.  Google Scholar

[11]

S. KatayamaC. Li and H. Sunagawa, A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D, Differ. Int. Equ., 27 (2014), 310-312.   Google Scholar

[12]

J. Kato and F. Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Int. Equ., 24 (2011), 923-940.   Google Scholar

[13]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., 46 (1987), 113-129.   Google Scholar

[14]

T. Kato, On nonlinear Schrödinger equations, Ⅱ. $H^s$-solutions and unconditional well-posedness, J. d'Anal. Math., 67 (1995), 281-306.  doi: 10.1007/BF02787794.  Google Scholar

[15]

N. Kita and A. Shimomura, Asymptotic behavior of solutions to Schrödinger equations with a subcritical dissipative nonlinearity, J. Differ. Equ., 242 (2007), 192–210. doi: 10.1016/j.jde.2007.07.003.  Google Scholar

[16]

N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.   Google Scholar

[17]

C. Li and N. Hayashi, Critical nonlinear Schrödinger equations with data in homogeneous weighted $\mathbf{L}^2$ spaces, J. Math. Anal. Appl., 419 (2014), 1214-1234.  doi: 10.1016/j.jmaa.2014.05.053.  Google Scholar

[18]

C. Li and H. Sunagawa, On Schrödinger systems with cubic dissipative nonlinearities of derivative type, Nonlinearity, 29 (2016), 1537-1563.  doi: 10.1088/0951-7715/29/5/1537.  Google Scholar

[19]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2nd edn., Springer, New York, 2015 doi: 10.1007/978-1-4939-2181-2.  Google Scholar

[20]

V. A. Liskevich and M. A. Perelmuter, Analyticity of submarkovian semigroups, Amer. Math. Soc., 123 (1995), 1097-1104.  doi: 10.2307/2160706.  Google Scholar

[21]

T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., 139 (1991), 479-493.   Google Scholar

[22]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var., 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.  Google Scholar

[23]

Y. SagawaH. Sunagawa and S. Yasuda, A sharp lower bound for the life span of small solutions to the Schödinger equation with a subcritical power nonlinearity, Differ. Int. Equ., 31 (2018), 685-700.   Google Scholar

[24]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Commun. Partial Differ. Equ., 31 (2006), 1407-1423.  doi: 10.1080/03605300600910316.  Google Scholar

[25]

W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, Reidel, Dordrecht, Holland, (1974), 53–78. Google Scholar

[26]

C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation: Self-focusing and wave collapse, Appl. Math. Sci., 139 Springer, 1999.  Google Scholar

[27]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial Ekvac., 30 (1987), 115-125.   Google Scholar

[28]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys., 110 (1987), 415-426.   Google Scholar

[1]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[2]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[3]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[4]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[5]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[6]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[7]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[8]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[9]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[10]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[11]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[12]

Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671

[13]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[14]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[15]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[16]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[17]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

[18]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[19]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[20]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (34)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]