We consider the $ p $-Laplacian equation $ -\Delta_p u = 1 $ for $ 1<p<2 $, on a regular bounded domain $ \Omega\subset\mathbb R^N $, with $ N\ge2 $, under homogeneous Dirichlet boundary conditions. In the spirit of Alexandrov's Soap Bubble Theorem and of Serrin's symmetry result for the overdetermined problems, we prove that if the mean curvature $ H $ of $ \partial\Omega $ is constant, then $ \Omega $ is a ball and the unique solution of the Dirichlet $ p $-Laplacian problem is radial. The main tools used are integral identities, the $ P $-function, and the maximum principle.
Citation: |
[1] | A. Aftalion, J. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907-932. |
[2] | A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315. doi: 10.1007/BF02413056. |
[3] | C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations, 43 (2018), 790-820. doi: 10.1080/03605302.2018.1475488. |
[4] | B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations, 245 (2008), 1566-1583. doi: 10.1016/j.jde.2008.06.010. |
[5] | F. Brock, Symmetry for a general class of overdetermined elliptic problems, Nonlinear Differential Equations and Applications NoDEA, (2016) 23: 36. doi: 10.1007/s00030-016-0390-1. |
[6] | F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo, 51 (2002), 375-390. doi: 10.1007/BF02871848. |
[7] | G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math., 70 (2017), 665-716. doi: 10.1002/cpa.21683. |
[8] | G. Ciraolo, R. Magnanini and V. Vespri, Hölder stability for Serrin's overdetermined problem, Ann. Mat. Pura Appl., 195 (2016), 1333-1345. doi: 10.1007/s10231-015-0518-7. |
[9] | G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, preprint, arXiv: 1806.08553. |
[10] | G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc., 20 (2018), 261-299. doi: 10.4171/JEMS/766. |
[11] | L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differential Equations, 5 (2000), 1179-1200. |
[12] | A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calculus of Variations and Partial Differential Equations, 31 (2008), 351-357. doi: 10.1007/s00526-007-0115-8. |
[13] | I. Fragalà, F. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Mathematische Zeitschrift, 254 (2006), 117-132. doi: 10.1007/s00209-006-0937-7. |
[14] | N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, American Journal of Mathematics, 111 (1989), 9-33. doi: 10.2307/2374477. |
[15] | B. Kawohl, Symmetrization–or how to prove symmetry of solutions to a pde, Partial differential equations (Praha, 1998), 406 (1999), 214-229. |
[16] | G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. |
[17] | R. Magnanini and G. Poggesi, On the stability for Alexandrov's soap bubble theorem, to appear in J. Anal. Math, (2016). |
[18] | R. Magnanini and G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, preprint, arXiv: 1708.07392. |
[19] | R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin's problem and the soap bubble theorem, preprint, arXiv: 1903.04823. |
[20] | F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, preprint, arXiv: 1802.03197. |
[21] | L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Methods Appl. Sci., 11 (1989), 805-819. doi: 10.1002/mma.1670110606. |
[22] | G. Poggesi, The Soap Bubble Theorem and Serrin's problem: quantitative symmetry, Ph.D thesis, Università di Firenze, arXiv: 1902.08584, 2019. |
[23] | C. Pucci and A. Colesanti, A symmetry result for the p-laplacian equation via the moving planes method, Applicable Analysis, 55 (1994), 207-213. doi: 10.1080/00036819408840300. |
[24] | P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007. |
[25] | R. C. Reilly, Mean curvature, the laplacian, and soap bubbles, The American Mathematical Monthly, 89 (1982), 180-198. doi: 10.2307/2320201. |
[26] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. doi: 10.1007/BF00250468. |
[27] | R. P. Sperb, Maximum Principles and Their Applications, Elsevier, 1981. |
[28] | J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202. doi: 10.1007/BF01449041. |
[29] | H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320. doi: 10.1007/BF00250469. |