February  2020, 19(2): 983-1000. doi: 10.3934/cpaa.2020045

The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem

1. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, via Carlo Alberto, 10 - 10123 Torino, Italy

2. 

Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, piazza di Porta S. Donato, 5 - 40126 Bologna, Italy

* Corresponding author

Received  March 2019 Revised  July 2019 Published  October 2019

We consider the $ p $-Laplacian equation $ -\Delta_p u = 1 $ for $ 1<p<2 $, on a regular bounded domain $ \Omega\subset\mathbb R^N $, with $ N\ge2 $, under homogeneous Dirichlet boundary conditions. In the spirit of Alexandrov's Soap Bubble Theorem and of Serrin's symmetry result for the overdetermined problems, we prove that if the mean curvature $ H $ of $ \partial\Omega $ is constant, then $ \Omega $ is a ball and the unique solution of the Dirichlet $ p $-Laplacian problem is radial. The main tools used are integral identities, the $ P $-function, and the maximum principle.

Citation: Francesca Colasuonno, Fausto Ferrari. The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem. Communications on Pure & Applied Analysis, 2020, 19 (2) : 983-1000. doi: 10.3934/cpaa.2020045
References:
[1]

A. AftalionJ. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907-932.   Google Scholar

[2]

A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.  doi: 10.1007/BF02413056.  Google Scholar

[3]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations, 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[4]

B. BrandoliniC. NitschP. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations, 245 (2008), 1566-1583.  doi: 10.1016/j.jde.2008.06.010.  Google Scholar

[5]

F. Brock, Symmetry for a general class of overdetermined elliptic problems, Nonlinear Differential Equations and Applications NoDEA, (2016) 23: 36. doi: 10.1007/s00030-016-0390-1.  Google Scholar

[6]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo, 51 (2002), 375-390.  doi: 10.1007/BF02871848.  Google Scholar

[7]

G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math., 70 (2017), 665-716.  doi: 10.1002/cpa.21683.  Google Scholar

[8]

G. CiraoloR. Magnanini and V. Vespri, Hölder stability for Serrin's overdetermined problem, Ann. Mat. Pura Appl., 195 (2016), 1333-1345.  doi: 10.1007/s10231-015-0518-7.  Google Scholar

[9]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, preprint, arXiv: 1806.08553. Google Scholar

[10]

G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc., 20 (2018), 261-299. doi: 10.4171/JEMS/766.  Google Scholar

[11]

L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differential Equations, 5 (2000), 1179-1200.   Google Scholar

[12]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calculus of Variations and Partial Differential Equations, 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[13]

I. FragalàF. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Mathematische Zeitschrift, 254 (2006), 117-132.  doi: 10.1007/s00209-006-0937-7.  Google Scholar

[14]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, American Journal of Mathematics, 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[15]

B. Kawohl, Symmetrization–or how to prove symmetry of solutions to a pde, Partial differential equations (Praha, 1998), 406 (1999), 214-229.   Google Scholar

[16]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[17]

R. Magnanini and G. Poggesi, On the stability for Alexandrov's soap bubble theorem, to appear in J. Anal. Math, (2016). Google Scholar

[18]

R. Magnanini and G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, preprint, arXiv: 1708.07392. Google Scholar

[19]

R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin's problem and the soap bubble theorem, preprint, arXiv: 1903.04823. Google Scholar

[20]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, preprint, arXiv: 1802.03197. Google Scholar

[21]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Methods Appl. Sci., 11 (1989), 805-819.  doi: 10.1002/mma.1670110606.  Google Scholar

[22]

G. Poggesi, The Soap Bubble Theorem and Serrin's problem: quantitative symmetry, Ph.D thesis, Università di Firenze, arXiv: 1902.08584, 2019. Google Scholar

[23]

C. Pucci and A. Colesanti, A symmetry result for the p-laplacian equation via the moving planes method, Applicable Analysis, 55 (1994), 207-213.  doi: 10.1080/00036819408840300.  Google Scholar

[24]

P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[25]

R. C. Reilly, Mean curvature, the laplacian, and soap bubbles, The American Mathematical Monthly, 89 (1982), 180-198.  doi: 10.2307/2320201.  Google Scholar

[26]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[27]

R. P. Sperb, Maximum Principles and Their Applications, Elsevier, 1981.  Google Scholar

[28]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.  doi: 10.1007/BF00250469.  Google Scholar

show all references

References:
[1]

A. AftalionJ. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907-932.   Google Scholar

[2]

A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.  doi: 10.1007/BF02413056.  Google Scholar

[3]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations, 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[4]

B. BrandoliniC. NitschP. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations, 245 (2008), 1566-1583.  doi: 10.1016/j.jde.2008.06.010.  Google Scholar

[5]

F. Brock, Symmetry for a general class of overdetermined elliptic problems, Nonlinear Differential Equations and Applications NoDEA, (2016) 23: 36. doi: 10.1007/s00030-016-0390-1.  Google Scholar

[6]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo, 51 (2002), 375-390.  doi: 10.1007/BF02871848.  Google Scholar

[7]

G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math., 70 (2017), 665-716.  doi: 10.1002/cpa.21683.  Google Scholar

[8]

G. CiraoloR. Magnanini and V. Vespri, Hölder stability for Serrin's overdetermined problem, Ann. Mat. Pura Appl., 195 (2016), 1333-1345.  doi: 10.1007/s10231-015-0518-7.  Google Scholar

[9]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, preprint, arXiv: 1806.08553. Google Scholar

[10]

G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc., 20 (2018), 261-299. doi: 10.4171/JEMS/766.  Google Scholar

[11]

L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differential Equations, 5 (2000), 1179-1200.   Google Scholar

[12]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calculus of Variations and Partial Differential Equations, 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[13]

I. FragalàF. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Mathematische Zeitschrift, 254 (2006), 117-132.  doi: 10.1007/s00209-006-0937-7.  Google Scholar

[14]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, American Journal of Mathematics, 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[15]

B. Kawohl, Symmetrization–or how to prove symmetry of solutions to a pde, Partial differential equations (Praha, 1998), 406 (1999), 214-229.   Google Scholar

[16]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[17]

R. Magnanini and G. Poggesi, On the stability for Alexandrov's soap bubble theorem, to appear in J. Anal. Math, (2016). Google Scholar

[18]

R. Magnanini and G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, preprint, arXiv: 1708.07392. Google Scholar

[19]

R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin's problem and the soap bubble theorem, preprint, arXiv: 1903.04823. Google Scholar

[20]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, preprint, arXiv: 1802.03197. Google Scholar

[21]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Methods Appl. Sci., 11 (1989), 805-819.  doi: 10.1002/mma.1670110606.  Google Scholar

[22]

G. Poggesi, The Soap Bubble Theorem and Serrin's problem: quantitative symmetry, Ph.D thesis, Università di Firenze, arXiv: 1902.08584, 2019. Google Scholar

[23]

C. Pucci and A. Colesanti, A symmetry result for the p-laplacian equation via the moving planes method, Applicable Analysis, 55 (1994), 207-213.  doi: 10.1080/00036819408840300.  Google Scholar

[24]

P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[25]

R. C. Reilly, Mean curvature, the laplacian, and soap bubbles, The American Mathematical Monthly, 89 (1982), 180-198.  doi: 10.2307/2320201.  Google Scholar

[26]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[27]

R. P. Sperb, Maximum Principles and Their Applications, Elsevier, 1981.  Google Scholar

[28]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.  doi: 10.1007/BF00250469.  Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[5]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[6]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[7]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[8]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[17]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[18]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[19]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[20]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (183)
  • HTML views (87)
  • Cited by (1)

Other articles
by authors

[Back to Top]