February  2020, 19(2): 983-1000. doi: 10.3934/cpaa.2020045

The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem

1. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, via Carlo Alberto, 10 - 10123 Torino, Italy

2. 

Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, piazza di Porta S. Donato, 5 - 40126 Bologna, Italy

* Corresponding author

Received  March 2019 Revised  July 2019 Published  October 2019

We consider the $ p $-Laplacian equation $ -\Delta_p u = 1 $ for $ 1<p<2 $, on a regular bounded domain $ \Omega\subset\mathbb R^N $, with $ N\ge2 $, under homogeneous Dirichlet boundary conditions. In the spirit of Alexandrov's Soap Bubble Theorem and of Serrin's symmetry result for the overdetermined problems, we prove that if the mean curvature $ H $ of $ \partial\Omega $ is constant, then $ \Omega $ is a ball and the unique solution of the Dirichlet $ p $-Laplacian problem is radial. The main tools used are integral identities, the $ P $-function, and the maximum principle.

Citation: Francesca Colasuonno, Fausto Ferrari. The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem. Communications on Pure & Applied Analysis, 2020, 19 (2) : 983-1000. doi: 10.3934/cpaa.2020045
References:
[1]

A. AftalionJ. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907-932.   Google Scholar

[2]

A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.  doi: 10.1007/BF02413056.  Google Scholar

[3]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations, 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[4]

B. BrandoliniC. NitschP. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations, 245 (2008), 1566-1583.  doi: 10.1016/j.jde.2008.06.010.  Google Scholar

[5]

F. Brock, Symmetry for a general class of overdetermined elliptic problems, Nonlinear Differential Equations and Applications NoDEA, (2016) 23: 36. doi: 10.1007/s00030-016-0390-1.  Google Scholar

[6]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo, 51 (2002), 375-390.  doi: 10.1007/BF02871848.  Google Scholar

[7]

G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math., 70 (2017), 665-716.  doi: 10.1002/cpa.21683.  Google Scholar

[8]

G. CiraoloR. Magnanini and V. Vespri, Hölder stability for Serrin's overdetermined problem, Ann. Mat. Pura Appl., 195 (2016), 1333-1345.  doi: 10.1007/s10231-015-0518-7.  Google Scholar

[9]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, preprint, arXiv: 1806.08553. Google Scholar

[10]

G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc., 20 (2018), 261-299. doi: 10.4171/JEMS/766.  Google Scholar

[11]

L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differential Equations, 5 (2000), 1179-1200.   Google Scholar

[12]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calculus of Variations and Partial Differential Equations, 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[13]

I. FragalàF. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Mathematische Zeitschrift, 254 (2006), 117-132.  doi: 10.1007/s00209-006-0937-7.  Google Scholar

[14]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, American Journal of Mathematics, 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[15]

B. Kawohl, Symmetrization–or how to prove symmetry of solutions to a pde, Partial differential equations (Praha, 1998), 406 (1999), 214-229.   Google Scholar

[16]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[17]

R. Magnanini and G. Poggesi, On the stability for Alexandrov's soap bubble theorem, to appear in J. Anal. Math, (2016). Google Scholar

[18]

R. Magnanini and G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, preprint, arXiv: 1708.07392. Google Scholar

[19]

R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin's problem and the soap bubble theorem, preprint, arXiv: 1903.04823. Google Scholar

[20]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, preprint, arXiv: 1802.03197. Google Scholar

[21]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Methods Appl. Sci., 11 (1989), 805-819.  doi: 10.1002/mma.1670110606.  Google Scholar

[22]

G. Poggesi, The Soap Bubble Theorem and Serrin's problem: quantitative symmetry, Ph.D thesis, Università di Firenze, arXiv: 1902.08584, 2019. Google Scholar

[23]

C. Pucci and A. Colesanti, A symmetry result for the p-laplacian equation via the moving planes method, Applicable Analysis, 55 (1994), 207-213.  doi: 10.1080/00036819408840300.  Google Scholar

[24]

P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[25]

R. C. Reilly, Mean curvature, the laplacian, and soap bubbles, The American Mathematical Monthly, 89 (1982), 180-198.  doi: 10.2307/2320201.  Google Scholar

[26]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[27]

R. P. Sperb, Maximum Principles and Their Applications, Elsevier, 1981.  Google Scholar

[28]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.  doi: 10.1007/BF00250469.  Google Scholar

show all references

References:
[1]

A. AftalionJ. Busca and W. Reichel, Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations, 4 (1999), 907-932.   Google Scholar

[2]

A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., 58 (1962), 303-315.  doi: 10.1007/BF02413056.  Google Scholar

[3]

C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Comm. Partial Differential Equations, 43 (2018), 790-820.  doi: 10.1080/03605302.2018.1475488.  Google Scholar

[4]

B. BrandoliniC. NitschP. Salani and C. Trombetti, On the stability of the Serrin problem, J. Differential Equations, 245 (2008), 1566-1583.  doi: 10.1016/j.jde.2008.06.010.  Google Scholar

[5]

F. Brock, Symmetry for a general class of overdetermined elliptic problems, Nonlinear Differential Equations and Applications NoDEA, (2016) 23: 36. doi: 10.1007/s00030-016-0390-1.  Google Scholar

[6]

F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo, 51 (2002), 375-390.  doi: 10.1007/BF02871848.  Google Scholar

[7]

G. Ciraolo and F. Maggi, On the shape of compact hypersurfaces with almost-constant mean curvature, Comm. Pure Appl. Math., 70 (2017), 665-716.  doi: 10.1002/cpa.21683.  Google Scholar

[8]

G. CiraoloR. Magnanini and V. Vespri, Hölder stability for Serrin's overdetermined problem, Ann. Mat. Pura Appl., 195 (2016), 1333-1345.  doi: 10.1007/s10231-015-0518-7.  Google Scholar

[9]

G. Ciraolo and A. Roncoroni, Serrin's type overdetermined problems in convex cones, preprint, arXiv: 1806.08553. Google Scholar

[10]

G. Ciraolo and L. Vezzoni, A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc., 20 (2018), 261-299. doi: 10.4171/JEMS/766.  Google Scholar

[11]

L. Damascelli and F. Pacella, Monotonicity and symmetry results for $p$-Laplace equations and applications, Adv. Differential Equations, 5 (2000), 1179-1200.   Google Scholar

[12]

A. Farina and B. Kawohl, Remarks on an overdetermined boundary value problem, Calculus of Variations and Partial Differential Equations, 31 (2008), 351-357.  doi: 10.1007/s00526-007-0115-8.  Google Scholar

[13]

I. FragalàF. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Mathematische Zeitschrift, 254 (2006), 117-132.  doi: 10.1007/s00209-006-0937-7.  Google Scholar

[14]

N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, American Journal of Mathematics, 111 (1989), 9-33.  doi: 10.2307/2374477.  Google Scholar

[15]

B. Kawohl, Symmetrization–or how to prove symmetry of solutions to a pde, Partial differential equations (Praha, 1998), 406 (1999), 214-229.   Google Scholar

[16]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[17]

R. Magnanini and G. Poggesi, On the stability for Alexandrov's soap bubble theorem, to appear in J. Anal. Math, (2016). Google Scholar

[18]

R. Magnanini and G. Poggesi, Serrin's problem and Alexandrov's soap bubble theorem: enhanced stability via integral identities, preprint, arXiv: 1708.07392. Google Scholar

[19]

R. Magnanini and G. Poggesi, Nearly optimal stability for Serrin's problem and the soap bubble theorem, preprint, arXiv: 1903.04823. Google Scholar

[20]

F. Pacella and G. Tralli, Overdetermined problems and constant mean curvature surfaces in cones, preprint, arXiv: 1802.03197. Google Scholar

[21]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Methods Appl. Sci., 11 (1989), 805-819.  doi: 10.1002/mma.1670110606.  Google Scholar

[22]

G. Poggesi, The Soap Bubble Theorem and Serrin's problem: quantitative symmetry, Ph.D thesis, Università di Firenze, arXiv: 1902.08584, 2019. Google Scholar

[23]

C. Pucci and A. Colesanti, A symmetry result for the p-laplacian equation via the moving planes method, Applicable Analysis, 55 (1994), 207-213.  doi: 10.1080/00036819408840300.  Google Scholar

[24]

P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[25]

R. C. Reilly, Mean curvature, the laplacian, and soap bubbles, The American Mathematical Monthly, 89 (1982), 180-198.  doi: 10.2307/2320201.  Google Scholar

[26]

J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.  doi: 10.1007/BF00250468.  Google Scholar

[27]

R. P. Sperb, Maximum Principles and Their Applications, Elsevier, 1981.  Google Scholar

[28]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[29]

H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.  doi: 10.1007/BF00250469.  Google Scholar

[1]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[2]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[3]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[4]

Leszek Gasiński, Nikolaos S. Papageorgiou. Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1421-1437. doi: 10.3934/cpaa.2009.8.1421

[5]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[6]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[7]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[8]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[9]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[10]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[11]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[12]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[13]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[14]

Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297

[15]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[16]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

[17]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[18]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[19]

Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753

[20]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (24)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]