February  2020, 19(2): 1001-1016. doi: 10.3934/cpaa.2020046

Asymptotic behavior of coupled inclusions with variable exponents

1. 

Mathematisches Institut, Universität Tübingen, D-72076 Tübingen, Germany

2. 

Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - Brazil

3. 

Fakultät für Mathematik, Universität of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany

* Corresponding author

Received  March 2019 Revised  June 2019 Published  October 2019

Fund Project: This work was initiated when the second author was supported with CNPq scholarship - process 202645/2014-2 (Brazil). The first author was suported by Chinese NSF grant 11571125. The second author was partially supported by the Brazilian research agency FAPEMIG process PPM 00329-16.

This work concerns the study of asymptotic behavior of the solutions of a nonautonomous coupled inclusion system with variable exponents. We prove the existence of a pullback attractor and that the system of inclusions is asymptotically autonomous.

Citation: Peter E. Kloeden, Jacson Simsen, Petra Wittbold. Asymptotic behavior of coupled inclusions with variable exponents. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1001-1016. doi: 10.3934/cpaa.2020046
References:
[1]

C. O. AlvesS. ShmarevJ. Simsen and M. S. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.  doi: 10.1016/j.jmaa.2016.05.024.  Google Scholar

[2]

J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Berlin, 1990.  Google Scholar

[4]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153–201. doi: 10.1023/A:1022902802385.  Google Scholar

[5]

T. CaraballoP. Marin-Rubio and J. C. Robinson, A comparison between two theories for multivalued semiflows and their asymptotic behaviour, Set-Valued Analysis, 11 (2003), 297-322.  doi: 10.1023/A:1024422619616.  Google Scholar

[6]

J. I. Díaz and I. I. Vrabie, Existence for reaction diffusion systems. A compactness method approach, J. Math. Anal. Appl., 188 (1994), 521-540.  doi: 10.1006/jmaa.1994.1443.  Google Scholar

[7]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[8]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[9]

P. HarjulehtoP. HästöU. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Analysis, 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems, J. Setvalued & Variational Analysis, 19 (2011), 43-57.  doi: 10.1007/s11228-009-0123-2.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc. Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equation with spatially variable exponents, Commun. Pure & Appl. Analysis, 13 (2014), 2543-2557.  doi: 10.3934/cpaa.2014.13.2543.  Google Scholar

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasilinear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911–918. doi: 10.1016/j.jmaa.2014.12.069.  Google Scholar

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, A pullback attractor for an asymptotically autonomous multivalued Cauchy problem with spatially variable exponent, J. Math. Anal. Appl., 445 (2017), 513-531.  doi: 10.1016/j.jmaa.2016.08.004.  Google Scholar

[16]

P. E. Kloeden and Me ihua Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[17]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83–111. doi: 10.1023/A:1008608431399.  Google Scholar

[18]

C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 87 (1982), 165–198. doi: 10.1016/0022-247X(82)90160-3.  Google Scholar

[19]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn., 13 (2001) 59–78. Google Scholar

[20]

M. Růžička, Flow of shear dependent elecrorheological fluids, C. R. Acad. Sci. Paris, Série I, 329 (1999), 393-398.  doi: 10.1016/S0764-4442(00)88612-7.  Google Scholar

[21]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lectures Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[22]

J. Simsen and J. Valero, Characterization of Pullback Attractors for Multivalued Nonautonomous Dynamical Systems, Advances in Dynamical Systems and Control, 179–195, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016.  Google Scholar

[23]

J. Simsen and E. Capelato, Some properties for exact generalized processes, Continuous and Distributed Systems II, 209–219, Studies in Systems, Decision and Control. 1ed. 30, Springer International Publishing, 2015. doi: 10.1007/978-3-319-19075-4_12.  Google Scholar

[24]

J. Simsen and C. B. Gentile, On p-Laplacian differential inclusions-Global existence, compactness properties and asymptotic behavior, Nonlinear Analysis, 71 (2009), 3488-3500.  doi: 10.1016/j.na.2009.02.044.  Google Scholar

[25]

J. Simsen and M. S. Simsen, Existence and upper semicontinuity of global attractors for $p(x)$-Laplacian systems, J. Math. Anal. Appl., 388 (2012), 23–38. doi: 10.1016/j.jmaa.2011.10.003.  Google Scholar

[26]

J. Simsen and M. S. Simsen, On asymptotically autonomous dynamics for multivalued evolution problems, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), no. 8, 3557–3567. doi: 10.3934/dcdsb.2018278.  Google Scholar

[27]

J. Simsen and P. Wittbold, Compactness results with applications for nonautonomous coupled inclusions, J. Math. Anal. Appl., 479 (2019), 426–449., doi: 10.1016/j.jmaa.2019.06.033.  Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[29]

I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second Editon, Pitman Monographs and Surveys in Pure and Applied Mathematics, New York, 1995.  Google Scholar

show all references

References:
[1]

C. O. AlvesS. ShmarevJ. Simsen and M. S. Simsen, The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.  doi: 10.1016/j.jmaa.2016.05.024.  Google Scholar

[2]

J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Berlin, 1990.  Google Scholar

[4]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153–201. doi: 10.1023/A:1022902802385.  Google Scholar

[5]

T. CaraballoP. Marin-Rubio and J. C. Robinson, A comparison between two theories for multivalued semiflows and their asymptotic behaviour, Set-Valued Analysis, 11 (2003), 297-322.  doi: 10.1023/A:1024422619616.  Google Scholar

[6]

J. I. Díaz and I. I. Vrabie, Existence for reaction diffusion systems. A compactness method approach, J. Math. Anal. Appl., 188 (1994), 521-540.  doi: 10.1006/jmaa.1994.1443.  Google Scholar

[7]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[8]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)-$laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[9]

P. HarjulehtoP. HästöU. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Analysis, 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[11]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems, J. Setvalued & Variational Analysis, 19 (2011), 43-57.  doi: 10.1007/s11228-009-0123-2.  Google Scholar

[12]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc. Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[13]

P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equation with spatially variable exponents, Commun. Pure & Appl. Analysis, 13 (2014), 2543-2557.  doi: 10.3934/cpaa.2014.13.2543.  Google Scholar

[14]

P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasilinear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911–918. doi: 10.1016/j.jmaa.2014.12.069.  Google Scholar

[15]

P. E. KloedenJ. Simsen and M. S. Simsen, A pullback attractor for an asymptotically autonomous multivalued Cauchy problem with spatially variable exponent, J. Math. Anal. Appl., 445 (2017), 513-531.  doi: 10.1016/j.jmaa.2016.08.004.  Google Scholar

[16]

P. E. Kloeden and Me ihua Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[17]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83–111. doi: 10.1023/A:1008608431399.  Google Scholar

[18]

C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl., 87 (1982), 165–198. doi: 10.1016/0022-247X(82)90160-3.  Google Scholar

[19]

K. Rajagopal and M. Růžička, Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn., 13 (2001) 59–78. Google Scholar

[20]

M. Růžička, Flow of shear dependent elecrorheological fluids, C. R. Acad. Sci. Paris, Série I, 329 (1999), 393-398.  doi: 10.1016/S0764-4442(00)88612-7.  Google Scholar

[21]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lectures Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[22]

J. Simsen and J. Valero, Characterization of Pullback Attractors for Multivalued Nonautonomous Dynamical Systems, Advances in Dynamical Systems and Control, 179–195, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016.  Google Scholar

[23]

J. Simsen and E. Capelato, Some properties for exact generalized processes, Continuous and Distributed Systems II, 209–219, Studies in Systems, Decision and Control. 1ed. 30, Springer International Publishing, 2015. doi: 10.1007/978-3-319-19075-4_12.  Google Scholar

[24]

J. Simsen and C. B. Gentile, On p-Laplacian differential inclusions-Global existence, compactness properties and asymptotic behavior, Nonlinear Analysis, 71 (2009), 3488-3500.  doi: 10.1016/j.na.2009.02.044.  Google Scholar

[25]

J. Simsen and M. S. Simsen, Existence and upper semicontinuity of global attractors for $p(x)$-Laplacian systems, J. Math. Anal. Appl., 388 (2012), 23–38. doi: 10.1016/j.jmaa.2011.10.003.  Google Scholar

[26]

J. Simsen and M. S. Simsen, On asymptotically autonomous dynamics for multivalued evolution problems, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), no. 8, 3557–3567. doi: 10.3934/dcdsb.2018278.  Google Scholar

[27]

J. Simsen and P. Wittbold, Compactness results with applications for nonautonomous coupled inclusions, J. Math. Anal. Appl., 479 (2019), 426–449., doi: 10.1016/j.jmaa.2019.06.033.  Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[29]

I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second Editon, Pitman Monographs and Surveys in Pure and Applied Mathematics, New York, 1995.  Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[11]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[12]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (171)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]