In this paper, we consider the following nonlinear Schrödinger equation
$ \begin{eqnarray*} - \varepsilon^{2}\Delta u_{ \varepsilon}+u_{ \varepsilon} = K(x)u_{ \varepsilon}^{p-1} & & {\rm{in\;}}\mathbb{R}^{N}, \end{eqnarray*} $
where $ N\ge3 $ and $ 2<p<2N/(N-2) $. Under mild assumptions on the function $ K $ and using the local Pohozaev identity method developed by Deng, Lin and Yan [
Citation: |
[1] |
A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24.![]() ![]() ![]() |
[2] |
A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 18 (2005), 317-348.
doi: 10.1007/BF02790279.![]() ![]() ![]() |
[3] |
A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Diff. Int. Equats., 18 (2005), 1321-1332.
![]() ![]() |
[4] |
A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302.![]() ![]() ![]() |
[5] |
T. Bartsch and S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58 (2007), 778-804.
doi: 10.1007/s00033-006-5111-x.![]() ![]() ![]() |
[6] |
D. Cao and H. P. Heinz, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243 (2003), 599-642.
doi: 10.1007/s00209-002-0485-8.![]() ![]() ![]() |
[7] |
D. Cao, S. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.
doi: 10.1007/s00526-015-0930-2.![]() ![]() ![]() |
[8] |
D. Cao, E. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Royal Soc. Edinburgh, 129 (1999), 235-264.
doi: 10.1017/S030821050002134X.![]() ![]() ![]() |
[9] |
D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34 (2009), 1566-1591.
doi: 10.1080/03605300903346721.![]() ![]() ![]() |
[10] |
Y. Deng, C.-S. Lin and S. Yan, On the prescribed scalar curvature problem in $\mathbb R^{N}$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.
doi: 10.1016/j.matpur.2015.07.003.![]() ![]() ![]() |
[11] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Cal. Var. PDE, 4 (1996), 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
[12] |
M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.
doi: 10.1016/S0294-1449(97)89296-7.![]() ![]() ![]() |
[13] |
A. Floer and A. Weinstein, Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[14] |
L. Glangetas, Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20 (1993), 115-178.
doi: 10.1016/0362-546X(93)90039-U.![]() ![]() ![]() |
[15] |
M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineairé, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0.![]() ![]() ![]() |
[16] |
C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Differ. Equ., 21 (1996), 787-820.
doi: 10.1080/03605309608821208.![]() ![]() ![]() |
[17] |
Y. Guo, S. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc., 114 (2017), 1005-1043.
doi: 10.1112/plms.12029.![]() ![]() ![]() |
[18] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbf{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
[19] |
G. Li, P. Luo, S. Peng, C. Wang and C.-L. Xiang, Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv: 1703.05459.
doi: 10.1017/prm.2018.108.![]() ![]() ![]() |
[20] |
E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., 62 (2000), 213-227.
doi: 10.1112/S002461070000898X.![]() ![]() ![]() |
[21] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_{a}$, Commun. Part. Differ. Equ., 13 (1988), 1499-1519.
doi: 10.1080/03605308808820585.![]() ![]() ![]() |
[22] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253.
![]() ![]() |
[23] |
P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |