February  2020, 19(2): 1037-1055. doi: 10.3934/cpaa.2020048

Local uniqueness problem for a nonlinear elliptic equation

1. 

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

2. 

Department of Mathematics, Jianghan University, Wuhan, Hubei, 430056, China

* Corresponding author

Received  March 2019 Revised  March 2019 Published  October 2019

Fund Project: Wan is supported by Scientific Research Fund of Hubei Provincial Education Department (B2013155). The corresponding author Xiang is financially supported by NSFC (No. 11701045) and the Yangtze Youth Fund (No. 2016cqn56).

In this paper, we consider the following nonlinear Schrödinger equation
$ \begin{eqnarray*} - \varepsilon^{2}\Delta u_{ \varepsilon}+u_{ \varepsilon} = K(x)u_{ \varepsilon}^{p-1} & & {\rm{in\;}}\mathbb{R}^{N}, \end{eqnarray*} $
where
$ N\ge3 $
and
$ 2<p<2N/(N-2) $
. Under mild assumptions on the function
$ K $
and using the local Pohozaev identity method developed by Deng, Lin and Yan [10], we show that multi-peak solutions to the above equation are unique for
$ \varepsilon>0 $
sufficiently small.
Citation: Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048
References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 18 (2005), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Diff. Int. Equats., 18 (2005), 1321-1332.   Google Scholar

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[5]

T. Bartsch and S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58 (2007), 778-804.  doi: 10.1007/s00033-006-5111-x.  Google Scholar

[6]

D. Cao and H. P. Heinz, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243 (2003), 599-642.  doi: 10.1007/s00209-002-0485-8.  Google Scholar

[7]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.  Google Scholar

[8]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Royal Soc. Edinburgh, 129 (1999), 235-264.  doi: 10.1017/S030821050002134X.  Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34 (2009), 1566-1591.  doi: 10.1080/03605300903346721.  Google Scholar

[10]

Y. DengC.-S. Lin and S. Yan, On the prescribed scalar curvature problem in $\mathbb R^{N}$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.  doi: 10.1016/j.matpur.2015.07.003.  Google Scholar

[11]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Cal. Var. PDE, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[12]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[13]

A. Floer and A. Weinstein, Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[14]

L. Glangetas, Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20 (1993), 115-178.  doi: 10.1016/0362-546X(93)90039-U.  Google Scholar

[15]

M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineairé, 19 (2002), 261-280.  doi: 10.1016/S0294-1449(01)00089-0.  Google Scholar

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Differ. Equ., 21 (1996), 787-820.  doi: 10.1080/03605309608821208.  Google Scholar

[17]

Y. GuoS. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc., 114 (2017), 1005-1043.  doi: 10.1112/plms.12029.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbf{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[19]

G. Li, P. Luo, S. Peng, C. Wang and C.-L. Xiang, Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv: 1703.05459. doi: 10.1017/prm.2018.108.  Google Scholar

[20]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.  Google Scholar

[21]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_{a}$, Commun. Part. Differ. Equ., 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585.  Google Scholar

[22]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253.   Google Scholar

[23]

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

show all references

References:
[1]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[2]

A. AmbrosettiA. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Anal. Math., 18 (2005), 317-348.  doi: 10.1007/BF02790279.  Google Scholar

[3]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Diff. Int. Equats., 18 (2005), 1321-1332.   Google Scholar

[4]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[5]

T. Bartsch and S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58 (2007), 778-804.  doi: 10.1007/s00033-006-5111-x.  Google Scholar

[6]

D. Cao and H. P. Heinz, Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations, Math. Z., 243 (2003), 599-642.  doi: 10.1007/s00209-002-0485-8.  Google Scholar

[7]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.  Google Scholar

[8]

D. CaoE. S. Noussair and S. Yan, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Royal Soc. Edinburgh, 129 (1999), 235-264.  doi: 10.1017/S030821050002134X.  Google Scholar

[9]

D. Cao and S. Peng, Semi-classical bound states for Schrödinger equations with potentials vanishing or unbounded at infinity, Comm. Partial Differential Equations, 34 (2009), 1566-1591.  doi: 10.1080/03605300903346721.  Google Scholar

[10]

Y. DengC.-S. Lin and S. Yan, On the prescribed scalar curvature problem in $\mathbb R^{N}$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.  doi: 10.1016/j.matpur.2015.07.003.  Google Scholar

[11]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Cal. Var. PDE, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[12]

M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 127-149.  doi: 10.1016/S0294-1449(97)89296-7.  Google Scholar

[13]

A. Floer and A. Weinstein, Nonspeading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[14]

L. Glangetas, Uniqueness of positive solutions of a nonlinear equation involving the critical exponent, Nonlinear Anal. TMA, 20 (1993), 115-178.  doi: 10.1016/0362-546X(93)90039-U.  Google Scholar

[15]

M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Lineairé, 19 (2002), 261-280.  doi: 10.1016/S0294-1449(01)00089-0.  Google Scholar

[16]

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Differ. Equ., 21 (1996), 787-820.  doi: 10.1080/03605309608821208.  Google Scholar

[17]

Y. GuoS. Peng and S. Yan, Local uniqueness and periodicity induced by concentration, Proc. Lond. Math. Soc., 114 (2017), 1005-1043.  doi: 10.1112/plms.12029.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbf{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[19]

G. Li, P. Luo, S. Peng, C. Wang and C.-L. Xiang, Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv: 1703.05459. doi: 10.1017/prm.2018.108.  Google Scholar

[20]

E. S. Noussair and S. Yan, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc., 62 (2000), 213-227.  doi: 10.1112/S002461070000898X.  Google Scholar

[21]

Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_{a}$, Commun. Part. Differ. Equ., 13 (1988), 1499-1519.  doi: 10.1080/03605308808820585.  Google Scholar

[22]

Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys., 131 (1990), 223-253.   Google Scholar

[23]

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[14]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (108)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]