\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study a semilinear hyperbolic-parabolic system as a model for some chemotaxis phenomena evolving on networks; we consider transmission conditions at the inner nodes which preserve the fluxes and nonhomogeneous boundary conditions having in mind phenomena with inflow of cells and food providing at the network exits. We give some conditions on the boundary data which ensure the existence of stationary solutions and we prove that these ones are asymptotic profiles for a class of global solutions.

    Mathematics Subject Classification: Primary: 35R02; Secondary: 35M33, 35L50, 35B40, 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. BorsheS. GottlichA. Klar and P. Schillen, The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247.  doi: 10.1142/S0218202513400071.
    [2] G. Bretti and R. Natalini, On modeling Maze solving ability of slime mold via a hyperbolic model of chemotaxis, J. Comput. Methods Sci. Eng., 18 (2018), 85-115. 
    [3] G. BrettiR. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: a numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 231-258.  doi: 10.1051/m2an/2013098.
    [4] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998.
    [5] L. Corrias and F. Camilli, Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017), 459-480.  doi: 10.1016/j.matpur.2017.07.003.
    [6] R. Dager and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Mathematiques & Applications, 50, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3.
    [7] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
    [8] J. M. Greemberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.  doi: 10.2307/2000597.
    [9] F. R. Guarguaglini, Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network, NHM, 13 (2018), 47-67.  doi: 10.3934/nhm.2018003.
    [10] F. R. GuarguagliniC. MasciaR. Natalini and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 39-76.  doi: 10.3934/dcdsb.2009.12.39.
    [11] F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671.  doi: 10.1137/140997099.
    [12] O. Kedem and A. Katchalsky, Thermo dynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27 (1958).
    [13] B. A. C. HarleyH. KimM. H. ZamanI. V. YannasD. A. Lauffenburger and L. J. Gibson, Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008), 4013-4024. 
    [14] T. HillenC. Rhode and F. Lutscher, Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 26 (2001), 173-199.  doi: 10.1006/jmaa.2001.7447.
    [15] T. Hillen and A. Stevens, Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.  doi: 10.1016/S0362-546X(99)00284-9.
    [16] B. B. Mandal and S. C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009), 2956-2965. 
    [17] D. Mugnolo, Simigroup Methods for Evolutions Equations on Networks, Springer (2014). doi: 10.1007/978-3-319-04621-1.
    [18] T. Nakagaki, H. Yamada and A. Tóth, Maze-solving by an amoeboid organism, Nature, 407 (2000), 470.
    [19] S. Nicaise, Control and stabilization of $2\times 2$ hyperbolic systems on graphs, Math. Control Relat. Fields, 7 (2017), 53-72.  doi: 10.3934/mcrf.2017004.
    [20] A. QuarteroniA. Veneziani and P. Zunino, Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls, SIAM J. Numer. Anal., 39 (2001), 1488-1511.  doi: 10.1137/S0036142900369714.
    [21] A. QuarteroniA. Veneziani and P. Zunino, A domain decompositions method for advection-diffusion processes with application to blood solutes, SIAM J. Sci. Comput., 23 (2002), 1959-1980.  doi: 10.1137/S1064827500375722.
    [22] L. A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J. Appl. Math., 32 (1977), 653-665. 
    [23] C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta and J. A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: an in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc. (2010).
    [24] C. Zong and G. Q. Xu, Observability and controllability analysis of blood flow network, Math. Control Relat. Fields, 4 (2014), 521-554.  doi: 10.3934/mcrf.2014.4.521.
    [25] J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.  doi: 10.1137/080733590.
  • 加载中
SHARE

Article Metrics

HTML views(1324) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return