• Previous Article
    Optimal global asymptotic behavior of the solution to a singular monge-ampère equation
  • CPAA Home
  • This Issue
  • Next Article
    Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size
February  2020, 19(2): 1111-1128. doi: 10.3934/cpaa.2020051

Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaan xi, 710129, China

* Corresponding author: Pengcheng Niu

Received  April 2019 Revised  June 2019 Published  October 2019

Fund Project: The first author is supported by NSFC grant No. 11771354 and Natural Science Basic Research Plan in Shaanxi Province of China grant No.2017JM5140.

In this article, we consider the cooperative semi-linear fractional system
$ (-\Delta)^{\frac{\alpha}{2}}\vec {u}(x) = \vec {h}(x,\vec {u}(x)), $
where
$ 0<\alpha <2 $
,
$ \vec u $
and
$ \vec h $
stand for
$ k $
-dimentional vector-valued functions, and
$ \vec {h}(x,\vec {u}(x)) $
is locally Lipschitz in
$ \vec {u} $
. We first establish two narrow region principles for different cases. Based on these principles, we use the direct method of moving spheres to prove the non-existence of positive solutions of the above system in bounded star-shaped domains and the whole space.
Citation: Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051
References:
[1]

D. Applebeaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972. Google Scholar

[3]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, Cambridge, 1996. Google Scholar

[5]

P. J. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Rep., 195 (1990), 127-293.   Google Scholar

[6]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Math., 224 (2010), 2052-2053.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Patial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017). doi: 10.1007/s00526-017-1110-3.  Google Scholar

[12]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[13]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[14]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2001), 744-753.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[15]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lecture notes in Math. Springer, Berlin, 1871 (2006), 1–43. doi: 10.1007/11545989_1.  Google Scholar

[16]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[17]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[18]

D. LiP. Niu and R. Zhuo, Nonexistence of positive solutions for an integral equation related to the Hardy-Sobolev inequality, Acta Appl. Math., 134 (2014), 185-200.  doi: 10.1007/s10440-014-9878-z.  Google Scholar

[19]

D. Li, P. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Compex Var. Elliptic Equ., 59 (2014). doi: 10.1080/17476933.2013.854346.  Google Scholar

[20]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with hardy term, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/j.jmaa.2014.11.029.  Google Scholar

[21]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[22]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar

[23]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl Sci. Numer. Simul., 11 (2006), 885-898.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[24]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pur. Appl. Anal., 16 (2017), 1707-1718.   Google Scholar

[25]

P. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.   Google Scholar

[26]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[27]

R. Zhuo and D. Li, A system of integral equations on half space, J. Math. Anal. Appl., 381 (2011), 392-401.   Google Scholar

show all references

References:
[1]

D. Applebeaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. Google Scholar

[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972. Google Scholar

[3]

M. BelloniV. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys., 54 (2003), 771-783.  doi: 10.1007/s00033-003-3209-y.  Google Scholar

[4]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics 121, Cambridge University Press, Cambridge, 1996. Google Scholar

[5]

P. J. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Rep., 195 (1990), 127-293.   Google Scholar

[6]

C. BrandleE. ColoradoA. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[7]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Math., 224 (2010), 2052-2053.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Patial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[10]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems, Discrete Contin. Dyn. Syst., 33 (2013), 3937-3955.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017). doi: 10.1007/s00526-017-1110-3.  Google Scholar

[12]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Advances in Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[13]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[14]

W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2001), 744-753.  doi: 10.1016/j.jmaa.2010.11.035.  Google Scholar

[15]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows, Lecture notes in Math. Springer, Berlin, 1871 (2006), 1–43. doi: 10.1007/11545989_1.  Google Scholar

[16]

M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[17]

S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., 195 (2016), 273-291.  doi: 10.1007/s10231-014-0462-y.  Google Scholar

[18]

D. LiP. Niu and R. Zhuo, Nonexistence of positive solutions for an integral equation related to the Hardy-Sobolev inequality, Acta Appl. Math., 134 (2014), 185-200.  doi: 10.1007/s10440-014-9878-z.  Google Scholar

[19]

D. Li, P. Niu and R. Zhuo, Symmetry and non-existence of positive solutions for PDE system with Navier boundary conditions on a half space, Compex Var. Elliptic Equ., 59 (2014). doi: 10.1080/17476933.2013.854346.  Google Scholar

[20]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with hardy term, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/j.jmaa.2014.11.029.  Google Scholar

[21]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar

[22]

W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161 (2000), 219-243.  doi: 10.1006/jdeq.1999.3700.  Google Scholar

[23]

V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl Sci. Numer. Simul., 11 (2006), 885-898.  doi: 10.1016/j.cnsns.2006.03.005.  Google Scholar

[24]

P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pur. Appl. Anal., 16 (2017), 1707-1718.   Google Scholar

[25]

P. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl., 450 (2017), 982-995.   Google Scholar

[26]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[27]

R. Zhuo and D. Li, A system of integral equations on half space, J. Math. Anal. Appl., 381 (2011), 392-401.   Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[10]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (127)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]