March  2020, 19(3): 1233-1256. doi: 10.3934/cpaa.2020057

Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime

1. 

Department of Mathematics and Research Institute of Natural Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

3. 

Institute of New Media and Communications, Seoul National University, Seoul 08826, Republic of Korea

4. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

* Corresponding author

Received  October 2018 Revised  August 2019 Published  November 2019

We present a hydrodynamic limit from the kinetic thermomechanical Cucker-Smale (TCS) model to the hydrodynamic Cucker-Smale (CS) model in a strong local alignment regime. For this, we first provide a global existence of weak solution, and flocking dynamics for classical solution to the kinetic TCS model with local alignment force. Then we consider one-parameter family of well-prepared initial data to the kinetic TCS model in which the temperature tends to common constant value determined by initial datum, as singular parameter $ \varepsilon $ tends to zero. In a strong local alignment regime, the limit model is the hydrodynamic CS model in [8]. To verify this hydrodynamic limit rigorously, we adopt the technique introduced in [5] which combines the relative entropy method together with the 2-Wasserstein metric.

Citation: Moon-Jin Kang, Seung-Yeal Ha, Jeongho Kim, Woojoo Shim. Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1233-1256. doi: 10.3934/cpaa.2020057
References:
[1]

Y.-P. ChoiS.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.  doi: 10.3934/nhm.2018017.  Google Scholar

[2]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.  Google Scholar

[3]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, To appear in J. Math. Fluid Mech. Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843-866.  doi: 10.2140/apde.2019.12.843.  Google Scholar

[6]

S.-Y. HaM.-J. Kang and B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Models Methods Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.  Google Scholar

[7]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.  Google Scholar

[8]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, A global existence of classical solution to the hydrodynamic Cucker-Smale model in presence of temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.  Google Scholar

[9]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.  Google Scholar

[10]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[11]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[12]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension one, Quart. Appl. Math., 75 (2017), 155-179.  doi: 10.1090/qam/1442.  Google Scholar

[15]

M.-J. Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett., 79 (2018), 85-91.  doi: 10.1016/j.aml.2017.12.001.  Google Scholar

[16]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

T. K. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.  Google Scholar

[19]

T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in: Hyperbolic conservation laws and related analysis with applications, in Springer Proceedings in Math. Statistics, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[20]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[21]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[22]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.  Google Scholar

[23]

A. Vasseur, Recent results on hydrodynamic limits, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, in: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376. doi: 10.1016/S1874-5717(08)00007-8.  Google Scholar

[24]

T. VicsekCz irókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

Y.-P. ChoiS.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.  doi: 10.3934/nhm.2018017.  Google Scholar

[2]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.  Google Scholar

[3]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, To appear in J. Math. Fluid Mech. Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843-866.  doi: 10.2140/apde.2019.12.843.  Google Scholar

[6]

S.-Y. HaM.-J. Kang and B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Models Methods Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.  Google Scholar

[7]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.  Google Scholar

[8]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, A global existence of classical solution to the hydrodynamic Cucker-Smale model in presence of temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.  Google Scholar

[9]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.  Google Scholar

[10]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[11]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[12]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension one, Quart. Appl. Math., 75 (2017), 155-179.  doi: 10.1090/qam/1442.  Google Scholar

[15]

M.-J. Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett., 79 (2018), 85-91.  doi: 10.1016/j.aml.2017.12.001.  Google Scholar

[16]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

T. K. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.  Google Scholar

[19]

T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in: Hyperbolic conservation laws and related analysis with applications, in Springer Proceedings in Math. Statistics, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[20]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[21]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[22]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.  Google Scholar

[23]

A. Vasseur, Recent results on hydrodynamic limits, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, in: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376. doi: 10.1016/S1874-5717(08)00007-8.  Google Scholar

[24]

T. VicsekCz irókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[3]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[4]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (109)
  • HTML views (64)
  • Cited by (0)

[Back to Top]