March  2020, 19(3): 1233-1256. doi: 10.3934/cpaa.2020057

Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime

1. 

Department of Mathematics and Research Institute of Natural Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea

3. 

Institute of New Media and Communications, Seoul National University, Seoul 08826, Republic of Korea

4. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

* Corresponding author

Received  October 2018 Revised  August 2019 Published  November 2019

We present a hydrodynamic limit from the kinetic thermomechanical Cucker-Smale (TCS) model to the hydrodynamic Cucker-Smale (CS) model in a strong local alignment regime. For this, we first provide a global existence of weak solution, and flocking dynamics for classical solution to the kinetic TCS model with local alignment force. Then we consider one-parameter family of well-prepared initial data to the kinetic TCS model in which the temperature tends to common constant value determined by initial datum, as singular parameter $ \varepsilon $ tends to zero. In a strong local alignment regime, the limit model is the hydrodynamic CS model in [8]. To verify this hydrodynamic limit rigorously, we adopt the technique introduced in [5] which combines the relative entropy method together with the 2-Wasserstein metric.

Citation: Moon-Jin Kang, Seung-Yeal Ha, Jeongho Kim, Woojoo Shim. Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1233-1256. doi: 10.3934/cpaa.2020057
References:
[1]

Y.-P. ChoiS.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.  doi: 10.3934/nhm.2018017.  Google Scholar

[2]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.  Google Scholar

[3]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, To appear in J. Math. Fluid Mech. Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843-866.  doi: 10.2140/apde.2019.12.843.  Google Scholar

[6]

S.-Y. HaM.-J. Kang and B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Models Methods Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.  Google Scholar

[7]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.  Google Scholar

[8]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, A global existence of classical solution to the hydrodynamic Cucker-Smale model in presence of temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.  Google Scholar

[9]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.  Google Scholar

[10]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[11]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[12]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension one, Quart. Appl. Math., 75 (2017), 155-179.  doi: 10.1090/qam/1442.  Google Scholar

[15]

M.-J. Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett., 79 (2018), 85-91.  doi: 10.1016/j.aml.2017.12.001.  Google Scholar

[16]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

T. K. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.  Google Scholar

[19]

T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in: Hyperbolic conservation laws and related analysis with applications, in Springer Proceedings in Math. Statistics, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[20]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[21]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[22]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.  Google Scholar

[23]

A. Vasseur, Recent results on hydrodynamic limits, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, in: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376. doi: 10.1016/S1874-5717(08)00007-8.  Google Scholar

[24]

T. VicsekCz irókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

Y.-P. ChoiS.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.  doi: 10.3934/nhm.2018017.  Google Scholar

[2]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.  Google Scholar

[3]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, To appear in J. Math. Fluid Mech. Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

A. Figalli and M.-J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843-866.  doi: 10.2140/apde.2019.12.843.  Google Scholar

[6]

S.-Y. HaM.-J. Kang and B. Kwon, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Models Methods Appl. Sci., 24 (2014), 2311-2359.  doi: 10.1142/S0218202514500225.  Google Scholar

[7]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.  Google Scholar

[8]

S.-Y. HaJ. KimC. MinT. Ruggeri and X. Zhang, A global existence of classical solution to the hydrodynamic Cucker-Smale model in presence of temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.  Google Scholar

[9]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.  Google Scholar

[10]

S.-Y. HaZ. LiM. Slemrod and X. Xue, Flocking behavior of the Cucker-Smale model under rooted leadership in a large coupling limit, Quart. Appl. Math., 72 (2014), 689-701.  doi: 10.1090/S0033-569X-2014-01350-5.  Google Scholar

[11]

S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.   Google Scholar

[12]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.  Google Scholar

[13]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[14]

P.-E. Jabin and T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension one, Quart. Appl. Math., 75 (2017), 155-179.  doi: 10.1090/qam/1442.  Google Scholar

[15]

M.-J. Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett., 79 (2018), 85-91.  doi: 10.1016/j.aml.2017.12.001.  Google Scholar

[16]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[17]

T. K. KarperA. Mellet and K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131-163.  doi: 10.1142/S0218202515500050.  Google Scholar

[18]

T. K. KarperA. Mellet and K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2013), 215-243.  doi: 10.1137/120866828.  Google Scholar

[19]

T. K. Karper, A. Mellet and K. Trivisa, On strong local alignment in the kinetic Cucker-Smale model, in: Hyperbolic conservation laws and related analysis with applications, in Springer Proceedings in Math. Statistics, 49 (2014), 227-242. doi: 10.1007/978-3-642-39007-4_11.  Google Scholar

[20]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[21]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[22]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152.  doi: 10.1142/S0218202517400103.  Google Scholar

[23]

A. Vasseur, Recent results on hydrodynamic limits, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, in: Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 323–376. doi: 10.1016/S1874-5717(08)00007-8.  Google Scholar

[24]

T. VicsekCz irókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

[2]

Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic & Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010

[3]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[4]

Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901

[5]

François Gay-Balmaz, Tudor S. Ratiu. Clebsch optimal control formulation in mechanics. Journal of Geometric Mechanics, 2011, 3 (1) : 41-79. doi: 10.3934/jgm.2011.3.41

[6]

Matthew M. Dunlop, Andrew M. Stuart. The Bayesian formulation of EIT: Analysis and algorithms. Inverse Problems & Imaging, 2016, 10 (4) : 1007-1036. doi: 10.3934/ipi.2016030

[7]

Haiyang Wang, Jianfeng Zhang. Forward backward SDEs in weak formulation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1021-1049. doi: 10.3934/mcrf.2018044

[8]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[9]

Azmy S. Ackleh, Ben G. Fitzpatrick, Horst R. Thieme. Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 917-928. doi: 10.3934/dcdsb.2005.5.917

[10]

André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135

[11]

Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

[12]

Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1337-1354. doi: 10.3934/dcdsb.2015.20.1337

[13]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

[14]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[15]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[16]

Wenjun Xia, Jinzhi Lei. Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences & Engineering, 2018, 15 (2) : 507-522. doi: 10.3934/mbe.2018023

[17]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[18]

Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146

[19]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[20]

Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (17)
  • HTML views (19)
  • Cited by (0)

[Back to Top]