March  2020, 19(3): 1609-1667. doi: 10.3934/cpaa.2020058

Travelling corners for spatially discrete reaction-diffusion systems

Mathematisch Instituut - Universiteit Leiden, P.O. Box 9512; 2300 RA Leiden; The Netherlands

* Corresponding author

Received  January 2019 Revised  September 2019 Published  November 2019

We consider reaction-diffusion equations on the planar square lattice that admit spectrally stable planar travelling wave solutions. We show that these solutions can be continued into a branch of travelling corners. As an example, we consider the monochromatic and bichromatic Nagumo lattice differential equation and show that both systems exhibit interior and exterior corners.

Our result is valid in the setting where the group velocity is zero. In this case, the equations for the corner can be written as a difference equation posed on an appropriate Hilbert space. Using a non-standard global center manifold reduction, we recover a two-component difference equation that describes the behaviour of solutions that bifurcate off the planar travelling wave. The main technical complication is the lack of regularity caused by the spatial discreteness, which prevents the symmetry group from being factored out in a standard fashion.

Citation: H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

P. W. BatesX. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.  doi: 10.1137/S0036141000374002.  Google Scholar

[3]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Rational Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[5]

M. BeckH. J. HupkesB. Sandstede and K. Zumbrun, Nonlinear stability of semidiscrete shocks for two-sided schemes, SIAM J. Math. Anal., 42 (2010), 857-903.  doi: 10.1137/090775634.  Google Scholar

[6]

J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42 (1984), 1-14.  doi: 10.1090/qam/736501.  Google Scholar

[7]

S. Benzoni-GavageP. Huot and F. Rousset, Nonlinear stability of semidiscrete shock waves, SIAM J. Math. Anal., 35 (2003), 639-707.  doi: 10.1137/S0036141002418054.  Google Scholar

[8]

H. BerestyckiF. Hamel and H. Matano, Bistable traveling waves around an obstacle, Comm. Pure Appl. Math., 62 (2009), 729-788.  doi: 10.1002/cpa.20275.  Google Scholar

[9]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.  doi: 10.1137/S0036141097316391.  Google Scholar

[10]

P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Mathematical and Theoretical, 45.3. doi: 10.1088/1751-8113/45/3/033001.  Google Scholar

[11]

P. C. Bressloff, Waves in Neural Media: From single Neurons to Neural Fields, Lecture notes on mathematical modeling in the life sciences., Springer, 2014. doi: 10.1007/978-1-4614-8866-8.  Google Scholar

[12]

J. W. CahnJ. Mallet-Paret and E. S. Van Vleck, Traveling wave solutions for systems of ODE's on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59 (1999), 455-493.  doi: 10.1137/S0036139996312703.  Google Scholar

[13]

J. W. Cahn and A. Novick-Cohen, Evolution equations for phase separation and ordering in binary alloys, J. Stat. Phys., 76 (1994), 877-909.   Google Scholar

[14]

J. W. Cahn and E. S. Van Vleck, On the co-existence and stability of trijunctions and quadrijunctions in a simple model, Acta Materialia, 47 (1999), 4627-4639.   Google Scholar

[15]

H. ChiJ. Bell and B. Hassard, Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory, J. Math. Bio., 24 (1986), 583-601.  doi: 10.1007/BF00275686.  Google Scholar

[16]

O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H. O. Walther, Delay Equations, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[17]

C. E. Elmer and E. S. Van Vleck, Spatially discrete fitzhugh-nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153-1174.  doi: 10.1137/S003613990343687X.  Google Scholar

[18]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[19]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chemical Engineering Science, 38 (1983), 29-43.   Google Scholar

[20]

V. A. GrieneisenJ. XuA. F. M. MaréeP. Hogeweg and B. Scheres, Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, 449 (2007), 1008-1013.   Google Scholar

[21]

M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Communications in Partial Differential Equations, 31 (2006), 791-815.  doi: 10.1080/03605300500361420.  Google Scholar

[22]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 23 doi: 10.1016/j.anihpc.2005.03.003.  Google Scholar

[23]

A. Hoffman, H. J. Hupkes and E. S. Van Vleck, Entire solutions for bistable lattice differential equations with obstacles, Memoirs of the AMS, to appear. doi: 10.1090/memo/1188.  Google Scholar

[24]

A. Hoffman, H. J. Hupkes and E. S. Van Vleck, Multi-dimensional stability of waves travelling through rectangular lattices in rational directions, Transactions of the AMS, to appear. doi: 10.1090/S0002-9947-2015-06392-2.  Google Scholar

[25]

A. Hoffman and J. Mallet-Paret, Universality of crystallographic pinning, J. Dyn. Diff. Eq., 22 (2010), 79-119.  doi: 10.1007/s10884-010-9157-2.  Google Scholar

[26]

H. J. Hupkes and B. Sandstede, Modulated wave trains for lattice differential systems, J. Dyn. Diff. Eq., 21 (2009), 417-485.  doi: 10.1007/s10884-009-9139-4.  Google Scholar

[27]

H. J. Hupkes and E. S. Van Vleck, Negative diffusion and traveling waves in high dimensional lattice systems, SIAM J. Math. Anal., 45 (2013), 1068-1135.  doi: 10.1137/120880628.  Google Scholar

[28]

H. J. Hupkes and S. M. Verduyn-Lunel, Center manifold theory for functional differential equations of mixed type, J. Dyn. Diff. Eq., 19 (2007), 497-560.  doi: 10.1007/s10884-006-9055-9.  Google Scholar

[29]

H. J. Hupkes, L. Morelli and P. Stehlík, Bichromatic travelling waves for lattice nagumo equations, arXiv preprint arXiv: 1805.10977. doi: 10.1137/18M1189221.  Google Scholar

[30]

A. F. Huxley and R. Stampfli, Evidence for saltatory conduction in peripheral meylinated nerve fibres, J. Physiology, 108 (1949), 315-339.   Google Scholar

[31]

A. KaminagaV. K. Vanag and I. R. Epstein, A reaction–diffusion memory device, Angewandte Chemie International Edition, 45 (2006), 3087-3089.   Google Scholar

[32]

T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269.  doi: 10.1090/S0002-9947-97-01668-1.  Google Scholar

[33]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[34]

R. S. Lillie, Factors Affecting transmission and recovery in the passive iron nerve model, J. of General Physiology, 7 (1925), 473-507.   Google Scholar

[35]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-48.  doi: 10.1023/A:1021889401235.  Google Scholar

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dyn. Diff. Eq., 11 (1999), 49-128.  doi: 10.1023/A:1021841618074.  Google Scholar

[37]

J. Mallet-Paret, Crystallographic pinning: direction dependent pinning in lattice differential equations, Preprint. Google Scholar

[38]

M. Or-Guil, M. Bode, C. P. Schenk and H. G. Purwins, Spot bifurcations in three-component reaction-diffusion systems: the onset of propagation, Physical Review E, 57 (1998), 6432. Google Scholar

[39]

D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: 1. traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001). doi: 10.1137/S0036139900346453.  Google Scholar

[40]

L. A. Ranvier, Lećons sur l'Histologie du Système Nerveux, par M. L. Ranvier, recueillies par M. Ed. Weber, F. Savy, Paris, 1878. Google Scholar

[41]

A. R. RoosenR. P. McCormack and W. C. Carter, Wulffman: A tool for the calculation and display of crystal shapes, Computational Materials Science, 11 (1998), 16-26.   Google Scholar

[42]

C. P. Schenk, M. Or-Guil, M. Bode and H. G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains, Physical Review Letters, 78 (1997), 3781. doi: 10.1103/PhysRevE.74.066201.  Google Scholar

[43]

J. Sneyd, Tutorials in Mathematical Biosciences Ⅱ., vol. 187 of Lecture Notes in Mathematics, chapter Mathematical Modeling of Calcium Dynamics and Signal Transduction., New York: Springer, 2005. doi: 10.1007/b107088.  Google Scholar

[44]

A. Vainchtein and E. S. Van Vleck, Nucleation and propagation of phase mixtures in a bistable chain, Phys. Rev. B, 79 (2009), 144123. Google Scholar

[45]

B. van Hal, Travelling Waves in Discrete Spatial Domains, Bachelor Thesis. Google Scholar

[46]

P. van Heijster and B. Sandstede, Bifurcations to travelling planar spots in a three-component FitzHugh–Nagumo system, Physica D, 275 (2014), 19-34.  doi: 10.1016/j.physd.2014.02.001.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

P. W. BatesX. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.  doi: 10.1137/S0036141000374002.  Google Scholar

[3]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Rational Mech. Anal., 150 (1999), 281-305.  doi: 10.1007/s002050050189.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[5]

M. BeckH. J. HupkesB. Sandstede and K. Zumbrun, Nonlinear stability of semidiscrete shocks for two-sided schemes, SIAM J. Math. Anal., 42 (2010), 857-903.  doi: 10.1137/090775634.  Google Scholar

[6]

J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42 (1984), 1-14.  doi: 10.1090/qam/736501.  Google Scholar

[7]

S. Benzoni-GavageP. Huot and F. Rousset, Nonlinear stability of semidiscrete shock waves, SIAM J. Math. Anal., 35 (2003), 639-707.  doi: 10.1137/S0036141002418054.  Google Scholar

[8]

H. BerestyckiF. Hamel and H. Matano, Bistable traveling waves around an obstacle, Comm. Pure Appl. Math., 62 (2009), 729-788.  doi: 10.1002/cpa.20275.  Google Scholar

[9]

A. Bonnet and F. Hamel, Existence of nonplanar solutions of a simple model of premixed bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.  doi: 10.1137/S0036141097316391.  Google Scholar

[10]

P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Mathematical and Theoretical, 45.3. doi: 10.1088/1751-8113/45/3/033001.  Google Scholar

[11]

P. C. Bressloff, Waves in Neural Media: From single Neurons to Neural Fields, Lecture notes on mathematical modeling in the life sciences., Springer, 2014. doi: 10.1007/978-1-4614-8866-8.  Google Scholar

[12]

J. W. CahnJ. Mallet-Paret and E. S. Van Vleck, Traveling wave solutions for systems of ODE's on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59 (1999), 455-493.  doi: 10.1137/S0036139996312703.  Google Scholar

[13]

J. W. Cahn and A. Novick-Cohen, Evolution equations for phase separation and ordering in binary alloys, J. Stat. Phys., 76 (1994), 877-909.   Google Scholar

[14]

J. W. Cahn and E. S. Van Vleck, On the co-existence and stability of trijunctions and quadrijunctions in a simple model, Acta Materialia, 47 (1999), 4627-4639.   Google Scholar

[15]

H. ChiJ. Bell and B. Hassard, Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory, J. Math. Bio., 24 (1986), 583-601.  doi: 10.1007/BF00275686.  Google Scholar

[16]

O. Diekmann, S. A. van Gils, S. M. Verduyn-Lunel and H. O. Walther, Delay Equations, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[17]

C. E. Elmer and E. S. Van Vleck, Spatially discrete fitzhugh-nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153-1174.  doi: 10.1137/S003613990343687X.  Google Scholar

[18]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[19]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of multistability, Chemical Engineering Science, 38 (1983), 29-43.   Google Scholar

[20]

V. A. GrieneisenJ. XuA. F. M. MaréeP. Hogeweg and B. Scheres, Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, 449 (2007), 1008-1013.   Google Scholar

[21]

M. Haragus and A. Scheel, Almost planar waves in anisotropic media, Communications in Partial Differential Equations, 31 (2006), 791-815.  doi: 10.1080/03605300500361420.  Google Scholar

[22]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 23 doi: 10.1016/j.anihpc.2005.03.003.  Google Scholar

[23]

A. Hoffman, H. J. Hupkes and E. S. Van Vleck, Entire solutions for bistable lattice differential equations with obstacles, Memoirs of the AMS, to appear. doi: 10.1090/memo/1188.  Google Scholar

[24]

A. Hoffman, H. J. Hupkes and E. S. Van Vleck, Multi-dimensional stability of waves travelling through rectangular lattices in rational directions, Transactions of the AMS, to appear. doi: 10.1090/S0002-9947-2015-06392-2.  Google Scholar

[25]

A. Hoffman and J. Mallet-Paret, Universality of crystallographic pinning, J. Dyn. Diff. Eq., 22 (2010), 79-119.  doi: 10.1007/s10884-010-9157-2.  Google Scholar

[26]

H. J. Hupkes and B. Sandstede, Modulated wave trains for lattice differential systems, J. Dyn. Diff. Eq., 21 (2009), 417-485.  doi: 10.1007/s10884-009-9139-4.  Google Scholar

[27]

H. J. Hupkes and E. S. Van Vleck, Negative diffusion and traveling waves in high dimensional lattice systems, SIAM J. Math. Anal., 45 (2013), 1068-1135.  doi: 10.1137/120880628.  Google Scholar

[28]

H. J. Hupkes and S. M. Verduyn-Lunel, Center manifold theory for functional differential equations of mixed type, J. Dyn. Diff. Eq., 19 (2007), 497-560.  doi: 10.1007/s10884-006-9055-9.  Google Scholar

[29]

H. J. Hupkes, L. Morelli and P. Stehlík, Bichromatic travelling waves for lattice nagumo equations, arXiv preprint arXiv: 1805.10977. doi: 10.1137/18M1189221.  Google Scholar

[30]

A. F. Huxley and R. Stampfli, Evidence for saltatory conduction in peripheral meylinated nerve fibres, J. Physiology, 108 (1949), 315-339.   Google Scholar

[31]

A. KaminagaV. K. Vanag and I. R. Epstein, A reaction–diffusion memory device, Angewandte Chemie International Edition, 45 (2006), 3087-3089.   Google Scholar

[32]

T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269.  doi: 10.1090/S0002-9947-97-01668-1.  Google Scholar

[33]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.  doi: 10.1137/0147038.  Google Scholar

[34]

R. S. Lillie, Factors Affecting transmission and recovery in the passive iron nerve model, J. of General Physiology, 7 (1925), 473-507.   Google Scholar

[35]

J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-48.  doi: 10.1023/A:1021889401235.  Google Scholar

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dyn. Diff. Eq., 11 (1999), 49-128.  doi: 10.1023/A:1021841618074.  Google Scholar

[37]

J. Mallet-Paret, Crystallographic pinning: direction dependent pinning in lattice differential equations, Preprint. Google Scholar

[38]

M. Or-Guil, M. Bode, C. P. Schenk and H. G. Purwins, Spot bifurcations in three-component reaction-diffusion systems: the onset of propagation, Physical Review E, 57 (1998), 6432. Google Scholar

[39]

D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: 1. traveling fronts and pulses, SIAM J. Appl. Math., 62 (2001). doi: 10.1137/S0036139900346453.  Google Scholar

[40]

L. A. Ranvier, Lećons sur l'Histologie du Système Nerveux, par M. L. Ranvier, recueillies par M. Ed. Weber, F. Savy, Paris, 1878. Google Scholar

[41]

A. R. RoosenR. P. McCormack and W. C. Carter, Wulffman: A tool for the calculation and display of crystal shapes, Computational Materials Science, 11 (1998), 16-26.   Google Scholar

[42]

C. P. Schenk, M. Or-Guil, M. Bode and H. G. Purwins, Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains, Physical Review Letters, 78 (1997), 3781. doi: 10.1103/PhysRevE.74.066201.  Google Scholar

[43]

J. Sneyd, Tutorials in Mathematical Biosciences Ⅱ., vol. 187 of Lecture Notes in Mathematics, chapter Mathematical Modeling of Calcium Dynamics and Signal Transduction., New York: Springer, 2005. doi: 10.1007/b107088.  Google Scholar

[44]

A. Vainchtein and E. S. Van Vleck, Nucleation and propagation of phase mixtures in a bistable chain, Phys. Rev. B, 79 (2009), 144123. Google Scholar

[45]

B. van Hal, Travelling Waves in Discrete Spatial Domains, Bachelor Thesis. Google Scholar

[46]

P. van Heijster and B. Sandstede, Bifurcations to travelling planar spots in a three-component FitzHugh–Nagumo system, Physica D, 275 (2014), 19-34.  doi: 10.1016/j.physd.2014.02.001.  Google Scholar

Figure 1.  The blue curves in the left and right panels depict the interface of an interior respectively exterior corner. Both corners travel at the speed $ d_{\varphi_-} = d_{\varphi_+} $ and share the coordinate system $ (n,l) $ depicted in the center. Angles are positive when oriented counter-clockwise and negative otherwise. All speeds are positive
Figure 2.  Both panels contain polar plots of the $ \zeta \mapsto c_{\rho,\zeta} $ relation, for various values of $ \rho > 0 $. Since $ c \le 0 $ in this setting, we have actually plotted the points $ -c_{\rho,\zeta}(\cos\zeta,\sin\zeta) $ for $ 0 \le \zeta \le \frac{\pi}{2} $. Notice the extra minima that start to form in the directions $ \tan \zeta = 1 $ and subsequently $ \tan \zeta = \frac{2}{3} $ as $ \rho $ is decreased
Figure 3.  The left panel contains numerically computed values for $ -\kappa_d(\rho) $. The sharp spikes occur at the critical value $ \rho_*(\zeta) $ where pinning sets in. We note that sign changes appear for $ \zeta = \frac{\pi}{2} $ but not for $ \zeta = 0 $. In particular, the identity $ c_g \equiv 0 $ for these directions implies that interior and exterior corners can both occur for $ \zeta = \frac{\pi}{2} $, while the horizontal direction $ \zeta = 0 $ features interior corners only. The right panel contains numerically computed values for $ c_g(\rho) $. Notice the zero-crossings for $ \tan \zeta = \frac{3}{4} $ and $ \tan \zeta = \frac{4}{5} $, which indicates the presence of interior corners at these two critical values for $ \rho $
Figure 4.  The left panel contains polar plots of the $ \zeta \mapsto c_{\rho, \alpha,\zeta} $ relation, with fixed $ \rho = 0 $. In particular, the curves consist of the points $ c_{\rho,\alpha,\zeta}(\cos\zeta,\sin\zeta) $. The right panel depicts the directional dispersion $ d(\zeta) = \frac{c_{\rho,\alpha, \zeta}}{\cos (\zeta - \zeta_*) } $, with $ \zeta_* = 0 $ for the left column and $ \zeta_* = \frac{\pi}{4} $ for the right column, again with $ \rho = 0 $. These results strongly suggest that $ [\partial_{\zeta}^2 d(\zeta) ]_{\zeta = \zeta_*} $ can take both signs as the diffusion coefficient $ \alpha $ is varied. In particular, both the horizontal and diagonal directions can have interior and exterior corners
Table 1.  Summary of the fashion in which the various assumptions in Theorem 2.3 were verified for the examples in §2.1-2.2, together with the encountered corner types
Monochromatic - §2.1 Bichromatic - §2.2
$ \zeta \in \mathbb{Z} \frac{\pi}{2} $ $ \zeta \in \frac{\pi}{4} + \mathbb{Z} \frac{\pi}{2} $ $ \tan \zeta \in \{ \frac{3}{4}, \frac{4}{5} \} $ $ \zeta \in \mathbb{Z} \frac{\pi}{2} $ $ \zeta \in \frac{\pi}{4} + \mathbb{Z} \frac{\pi}{2} $
$ c \neq 0 $ in $ \mathrm{(H}\Phi\mathrm{)} $ analytic for $ \rho_*(\zeta)< \left\vert{\rho}\right\vert < 1 $ numeric analytic for open set $ (\rho, \alpha) $}
(HS1)-(HS3) analytic analytic
$ c_g = 0 $ analytic numeric analytic
$ [\partial^2_z \lambda_z]_{z =0 } \neq 0 $ analytic numeric analytic
$ [\partial^2_\varphi d_\varphi]_{\varphi = 0 } \neq 0 $ numeric visual
Corner types interior both interior both
Monochromatic - §2.1 Bichromatic - §2.2
$ \zeta \in \mathbb{Z} \frac{\pi}{2} $ $ \zeta \in \frac{\pi}{4} + \mathbb{Z} \frac{\pi}{2} $ $ \tan \zeta \in \{ \frac{3}{4}, \frac{4}{5} \} $ $ \zeta \in \mathbb{Z} \frac{\pi}{2} $ $ \zeta \in \frac{\pi}{4} + \mathbb{Z} \frac{\pi}{2} $
$ c \neq 0 $ in $ \mathrm{(H}\Phi\mathrm{)} $ analytic for $ \rho_*(\zeta)< \left\vert{\rho}\right\vert < 1 $ numeric analytic for open set $ (\rho, \alpha) $}
(HS1)-(HS3) analytic analytic
$ c_g = 0 $ analytic numeric analytic
$ [\partial^2_z \lambda_z]_{z =0 } \neq 0 $ analytic numeric analytic
$ [\partial^2_\varphi d_\varphi]_{\varphi = 0 } \neq 0 $ numeric visual
Corner types interior both interior both
[1]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[2]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[3]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

[4]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[5]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[6]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[7]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[8]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[9]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[10]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[11]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[12]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[13]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[14]

Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677

[15]

Martin Golubitsky, Claire Postlethwaite. Feed-forward networks, center manifolds, and forcing. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2913-2935. doi: 10.3934/dcds.2012.32.2913

[16]

Luis Barreira, Claudia Valls. Center manifolds for nonuniform trichotomies and arbitrary growth rates. Communications on Pure & Applied Analysis, 2010, 9 (3) : 643-654. doi: 10.3934/cpaa.2010.9.643

[17]

Marco Spadini. Branches of harmonic solutions to periodically perturbed coupled differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 951-964. doi: 10.3934/dcds.2006.15.951

[18]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[19]

Luca Bisconti, Marco Spadini. On the set of harmonic solutions of a class of perturbed coupled and nonautonomous differential equations on manifolds. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1471-1492. doi: 10.3934/cpaa.2017070

[20]

Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 605-618. doi: 10.3934/dcdsb.2007.7.605

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]