March  2020, 19(3): 1257-1273. doi: 10.3934/cpaa.2020060

Stochastic functional Hamiltonian system with singular coefficients

1. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2. 

Department of Statistics, College of Science, Donghua University, Shanghai 201620, China

* Corresponding author

Received  February 2019 Revised  August 2019 Published  November 2019

By Zvonkin type transforms, the existence and uniqueness of the strong solutions for a class of stochastic functional Hamiltonian systems are obtained, where the drift contains a Hölder-Dini continuous perturbation. Moreover, under some reasonable conditions, the non-explosion of the solution is proved. In addition, as applications, the Harnack and shift Harnack inequalities are derived by method of coupling by change of measure. These inequalities are new even in the case without delay and the shift Harnack inequality is also new even in the non-degenerate functional SDEs with singular drifts.

Citation: Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1257-1273. doi: 10.3934/cpaa.2020060
References:
[1]

K. Bahlali, Flows of homeomorphisms of stochastic differential equations with measurable drift, Stochastic Rep., 67 (1999), 53–82. doi: 10.1080/17442509908834203.  Google Scholar

[2]

S. Bachmann, Well-posedness and stability for a class of stochastic delay differential equations with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500193.  Google Scholar

[3]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.  Google Scholar

[4]

J. Bao, F.-Y. Wang and C. Yuan, Derivative formula and Harnack inequality for degenerate functionals SDEs, Stoch. Dyn., 13 (2013), 943–951. doi: 10.1142/S021949371250013X.  Google Scholar

[5]

E. Chaudru de Raynal, Weak regularization by stochastic drift: result and counter example, Discrete Cont Dyn-A, 38 (2018), 1269–1291. doi: 10.3934/dcds.2018052.  Google Scholar

[6]

E. Chaudru de Raynal and S. Menozzi, Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result, arXiv: 1710.03620. Google Scholar

[7]

I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.  Google Scholar

[8]

Z.-Q Chen and X. C. Zhang, Propagation of regularity in $L^p$-spaces for Kolmogorov type hypoelliptic operators, arXiv: 1706.02181. Google Scholar

[9]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electron J Probab, 22 (2017), 1–48. doi: 10.1214/17-EJP65.  Google Scholar

[10]

A. Guillin and F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253 (2012), 20–40. doi: 10.1016/j.jde.2012.03.014.  Google Scholar

[11]

L. Gyöngy and T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J., 51 (2001), 763–783. doi: 10.1023/A:1013764929351.  Google Scholar

[12]

X. Huang, Strong solutions for functional SDEs with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500156.  Google Scholar

[13]

X. Huang and F.-Y. Wang, Functional SPDE with multiplicative noise and Dini drift, Ann. Fac. Sci. Toulouse Math., 6 (2017), 519–537. doi: 10.5802/afst.1544.  Google Scholar

[14]

X. Huang and F.-Y. Wang, Degenerate SDEs with singular drift and applications to Heisenberg groups, J. Differential Equations, 265 (2018), 2745–2777. doi: 10.1016/j.jde.2018.04.050.  Google Scholar

[15]

X. Huang and S.-Q. Zhang, Mild solutions and Harnack inequality for functional stochastic partial differential equations with Dini drift, J. Theoret. Probab., 32 (2019), 303–329. doi: 10.1007/s10959-018-0830-4.  Google Scholar

[16]

E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka Journal of Mathematics, 49 (2012), 421–447.  Google Scholar

[17]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[18]

T. Seidman, How violent are fast controls, Mathematics of Control Signals Systems, 1 (1988), 89–95. doi: 10.1007/BF02551238.  Google Scholar

[19]

J. Shao, F.-Y. Wang and C. Yuan, Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients, Elect. J. Probab., 17 (2012), 1–18. doi: 10.1214/EJP.v17-2140.  Google Scholar

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[21]

Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792–2829. doi: 10.1016/j.jde.2015.10.020.  Google Scholar

[22]

Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013. doi: 10.1007/978-1-4614-7934-5.  Google Scholar

[23]

Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 272 (2017), 5360–5383. doi: 10.1016/j.jfa.2017.03.015.  Google Scholar

[24]

Y. Wang and X. C. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99 (2013), 726–740. doi: 10.1016/j.matpur.2012.10.007.  Google Scholar

[25]

Y. Wang and X. C. Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48 (2016), 2189–2226. doi: 10.1137/15M1023671.  Google Scholar

[26]

X. C. Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Proc. Appl., 120 (2010), 1929–1949. doi: 10.1016/j.spa.2010.05.015.  Google Scholar

[27]

X. C. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115 (2005), 1805–1818. doi: 10.1016/j.spa.2005.06.003.  Google Scholar

[28]

X. C. Zhang, Stochastic hamiltonian flows with singular coefficients, Sci China Math, 61 (2018), 1353–1384. doi: 10.1007/s11425-017-9127-0.  Google Scholar

[29]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129–149,152.  Google Scholar

show all references

References:
[1]

K. Bahlali, Flows of homeomorphisms of stochastic differential equations with measurable drift, Stochastic Rep., 67 (1999), 53–82. doi: 10.1080/17442509908834203.  Google Scholar

[2]

S. Bachmann, Well-posedness and stability for a class of stochastic delay differential equations with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500193.  Google Scholar

[3]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.  Google Scholar

[4]

J. Bao, F.-Y. Wang and C. Yuan, Derivative formula and Harnack inequality for degenerate functionals SDEs, Stoch. Dyn., 13 (2013), 943–951. doi: 10.1142/S021949371250013X.  Google Scholar

[5]

E. Chaudru de Raynal, Weak regularization by stochastic drift: result and counter example, Discrete Cont Dyn-A, 38 (2018), 1269–1291. doi: 10.3934/dcds.2018052.  Google Scholar

[6]

E. Chaudru de Raynal and S. Menozzi, Regularization effects of a noise propagating through a chain of differential equations: an almost sharp result, arXiv: 1710.03620. Google Scholar

[7]

I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.  Google Scholar

[8]

Z.-Q Chen and X. C. Zhang, Propagation of regularity in $L^p$-spaces for Kolmogorov type hypoelliptic operators, arXiv: 1706.02181. Google Scholar

[9]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electron J Probab, 22 (2017), 1–48. doi: 10.1214/17-EJP65.  Google Scholar

[10]

A. Guillin and F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality, J. Differential Equations, 253 (2012), 20–40. doi: 10.1016/j.jde.2012.03.014.  Google Scholar

[11]

L. Gyöngy and T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J., 51 (2001), 763–783. doi: 10.1023/A:1013764929351.  Google Scholar

[12]

X. Huang, Strong solutions for functional SDEs with singular drift, Stoch. Dyn., 18 (2018). doi: 10.1142/S0219493718500156.  Google Scholar

[13]

X. Huang and F.-Y. Wang, Functional SPDE with multiplicative noise and Dini drift, Ann. Fac. Sci. Toulouse Math., 6 (2017), 519–537. doi: 10.5802/afst.1544.  Google Scholar

[14]

X. Huang and F.-Y. Wang, Degenerate SDEs with singular drift and applications to Heisenberg groups, J. Differential Equations, 265 (2018), 2745–2777. doi: 10.1016/j.jde.2018.04.050.  Google Scholar

[15]

X. Huang and S.-Q. Zhang, Mild solutions and Harnack inequality for functional stochastic partial differential equations with Dini drift, J. Theoret. Probab., 32 (2019), 303–329. doi: 10.1007/s10959-018-0830-4.  Google Scholar

[16]

E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka Journal of Mathematics, 49 (2012), 421–447.  Google Scholar

[17]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[18]

T. Seidman, How violent are fast controls, Mathematics of Control Signals Systems, 1 (1988), 89–95. doi: 10.1007/BF02551238.  Google Scholar

[19]

J. Shao, F.-Y. Wang and C. Yuan, Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients, Elect. J. Probab., 17 (2012), 1–18. doi: 10.1214/EJP.v17-2140.  Google Scholar

[20]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[21]

Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792–2829. doi: 10.1016/j.jde.2015.10.020.  Google Scholar

[22]

Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, New York, 2013. doi: 10.1007/978-1-4614-7934-5.  Google Scholar

[23]

Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 272 (2017), 5360–5383. doi: 10.1016/j.jfa.2017.03.015.  Google Scholar

[24]

Y. Wang and X. C. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99 (2013), 726–740. doi: 10.1016/j.matpur.2012.10.007.  Google Scholar

[25]

Y. Wang and X. C. Zhang, Degenerate SDE with Hölder-Dini drift and non-Lipschitz noise coefficient, SIAM J. Math. Anal., 48 (2016), 2189–2226. doi: 10.1137/15M1023671.  Google Scholar

[26]

X. C. Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Proc. Appl., 120 (2010), 1929–1949. doi: 10.1016/j.spa.2010.05.015.  Google Scholar

[27]

X. C. Zhang, Strong solutions of SDEs with singural drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115 (2005), 1805–1818. doi: 10.1016/j.spa.2005.06.003.  Google Scholar

[28]

X. C. Zhang, Stochastic hamiltonian flows with singular coefficients, Sci China Math, 61 (2018), 1353–1384. doi: 10.1007/s11425-017-9127-0.  Google Scholar

[29]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129–149,152.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[3]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[4]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[5]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[6]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[7]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[8]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[17]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[18]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[19]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[20]

Theresa Lange, Wilhelm Stannat. Mean field limit of ensemble square root filters - discrete and continuous time. Foundations of Data Science, 2021  doi: 10.3934/fods.2021003

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (134)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]