March  2020, 19(3): 1669-1695. doi: 10.3934/cpaa.2020061

Homogenization of a locally periodic time-dependent domain

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

* Corresponding author

Received  February 2019 Revised  August 2019 Published  November 2019

We consider the homogenization of a Robin boundary value problem in a locally periodic perforated domain which is also time-dependent. We aim at justifying the homogenization limit, that we derive through asymptotic expansion technique. More exactly, we obtain the so-called corrector homogenization estimate that specifies the convergence rate. The major challenge is that the media is not cylindrical and changes over time. We also show the existence and uniqueness of solutions of the microscopic problem.

Citation: Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061
References:
[1]

G. A. Afrouzi and K. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions, Proceedings of the American Mathematical Society, 127 (1999), 125-130.  doi: 10.1090/S0002-9939-99-04561-X.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul., 4 (2005), 790-812.  doi: 10.1137/040611239.  Google Scholar

[4]

R. BarreiraC. M. Elliot and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63 (2011), 1095-1119.  doi: 10.1007/s00285-011-0401-0.  Google Scholar

[5]

J. CalvoN. Matteo and O. Giandomenico, Parabolic equations in time-dependent domains, Journal of Evolution Equations, 17 (2017), 781-804.  doi: 10.1007/s00028-016-0336-4.  Google Scholar

[6]

M. A. J. ChaplainM. Ganesh and I. G. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.  doi: 10.1007/s002850000067.  Google Scholar

[7]

G. A. Chechkin and A. L. Piatnitski, Homogenization of boundary-value problem in a locally periodic perforated domain, Appl. Anal., 71 (1999), 215-235.  doi: 10.1080/00036819908840714.  Google Scholar

[8]

G. A. Chechkin, A. L. Piatnitski and A. S. Shamev, Homogenization: Methods and Applications, American Mathematical Soc., Vol. 234, 2007.  Google Scholar

[9]

E. J. CrampinW. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bulletin of Mathematical Biology, 64 (2002), 747-769.  doi: 10.1006/bulm.2002.0295.  Google Scholar

[10]

S. Dobberschutz, Homogenization Techniques for Lower Dimensional Structures, Doctoral dissertation, Bremen, Universität Bremen, Diss., 2012. Google Scholar

[11]

T. Giorgi and R. Smits, Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 224-245.  doi: 10.1007/s00033-005-0049-y.  Google Scholar

[12]

L. G. HarrisonS. Wehner and D. M. Holloway, Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth, Faraday Discuss, 120 (2001), 277-294.  doi: 10.1039/b103246c.  Google Scholar

[13]

U. Hornung, Homogenization and Porous Media, Springer Science & Business Media, Vol. 6, 2012. doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[14]

T. HouX. H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Mathematics of Computation, 68 (1999), 913-943.  doi: 10.1090/S0025-5718-99-01077-7.  Google Scholar

[15]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Dover, 1994.  Google Scholar

[16]

S. A. Meier, Two-Scale Models for Reactive Transport and Evolving Microstructure, PhD thesis, Universität Bremen, 2008. Google Scholar

[17]

S. A. Meier and M. Böhm, A note on the construction of function spaces for distributed-microstructure models with spatially varying cell geometry, Int. J. Numer. Anal. Model, 5 (2008), 109-125.   Google Scholar

[18]

A. Muntean and T. L. Van Noorden, Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity., European Journal of Applied Mathematics, 24 (2013), 657-677.  doi: 10.1017/S0956792513000090.  Google Scholar

[19]

C. Nicholson and S. Hrabětová, Brain extracellular space: The final frontier of neuroscience, Biophysical Journal, 113 (2017), 2133-2142.  doi: 10.1016/j.bpj.2017.06.052.  Google Scholar

[20]

C. NicholsonP. Kamali-Zare and L. Tao, Brain extracellular space as a diffusion barrier,, Computing and Visualization in Science, 14 (2011), 309-325.  doi: 10.1007/s00791-012-0185-9.  Google Scholar

[21]

R. Nittka, Inhomogeneous parabolic Neumann problems, Czechoslovak Mathematical Journal, 64 (2014), 703-742.  doi: 10.1007/s10587-014-0127-4.  Google Scholar

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[23]

F. Paronetto, An existence result for evolution equations in non-cylindrical domains, Nonlinear Differential Equations and Applications, 20 (2013), 1723-1740.  doi: 10.1007/s00030-013-0227-0.  Google Scholar

[24]

R. G. PlazaF. Sánchez-GarduñoP. PadillaR. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation, Journal of Dynamics and Differential Equations, 16 (2004), 1093-1121.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[25]

J. Pruss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser, Vol. 105, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[26]

M. Ptashnyk, Two-scale convergence for locally periodic microstructures and homogenization of plywood structures, Multiscale Modeling & Simulation, 11 (2013), 92–117. doi: 10.1137/120862338.  Google Scholar

[27]

M. Ptashnyk, Locally periodic unfolding method and two-scale convergence on surfaces of locally periodic microstructures, Multiscale Modeling & Simulation, 13 (2015), 1061–1105. doi: 10.1137/140978405.  Google Scholar

[28]

N. RayT. van NoordenF. Frank and P. Knabner, Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure, Transp. Porous Media, 95 (2012), 669-696.  doi: 10.1007/s11242-012-0068-z.  Google Scholar

[29]

N. RayT. L. van NoordenF. A. RaduW. Friess and P. Knabner, Drug release from collagen matrices including an evolving microstructure, ZAMM Z. Angew. Math. Mech., 93 (2013), 811-822.  doi: 10.1002/zamm.201200196.  Google Scholar

[30]

S. Reichelt., Two-Scale Homogenization of Systems of Nonlinear Parabolic Equations, PhD thesis, University of Berlin, 2015. Google Scholar

[31]

R. Schulz and P. Knabner, Derivation and analysis of an effective model for biofilm growth in evolving porous media, Math. Methods Appl. Sci., 40 (2016), 2930-2948.  doi: 10.1002/mma.4211.  Google Scholar

[32]

R. Schulz and P. Knabner, An effective model for biofilm growth made by chemotactical bacteria in evolving porous media, SIAM Journal on Applied Mathematics, 77 (2017), 1653-1677.  doi: 10.1137/16M108817X.  Google Scholar

[33]

V. A. Solonnikov., On the boundary value problems for linear parabolic systems of differential equations of general form. Proceedings of the Steklov Institute of Mathematics, 83 (1965). (English translation by American Mathematical Society, 1967)  Google Scholar

[34]

T. L. Van Noorden, Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments, Multiscale Modeling & Simulation, 7 (2009), 1220–1236. doi: 10.1137/080722096.  Google Scholar

[35]

T. L. Van Noorden and A. Muntean, Homogenization of a locally periodic medium with areas of low and high diffusivity, European Journal of Applied Mathematics, 22 (2011), 493-516.  doi: 10.1017/S0956792511000209.  Google Scholar

[36]

E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, 2011.  Google Scholar

[37]

M. Yousefnezhad, M. Fotouhi, K. Vejdani and P. Kamali-Zare, Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry, Physical Review E, 94 (2016), 032411. doi: 10.1103/PhysRevE.94.032411.  Google Scholar

show all references

References:
[1]

G. A. Afrouzi and K. Brown, On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions, Proceedings of the American Mathematical Society, 127 (1999), 125-130.  doi: 10.1090/S0002-9939-99-04561-X.  Google Scholar

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.  Google Scholar

[3]

G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul., 4 (2005), 790-812.  doi: 10.1137/040611239.  Google Scholar

[4]

R. BarreiraC. M. Elliot and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63 (2011), 1095-1119.  doi: 10.1007/s00285-011-0401-0.  Google Scholar

[5]

J. CalvoN. Matteo and O. Giandomenico, Parabolic equations in time-dependent domains, Journal of Evolution Equations, 17 (2017), 781-804.  doi: 10.1007/s00028-016-0336-4.  Google Scholar

[6]

M. A. J. ChaplainM. Ganesh and I. G. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biol., 42 (2001), 387-423.  doi: 10.1007/s002850000067.  Google Scholar

[7]

G. A. Chechkin and A. L. Piatnitski, Homogenization of boundary-value problem in a locally periodic perforated domain, Appl. Anal., 71 (1999), 215-235.  doi: 10.1080/00036819908840714.  Google Scholar

[8]

G. A. Chechkin, A. L. Piatnitski and A. S. Shamev, Homogenization: Methods and Applications, American Mathematical Soc., Vol. 234, 2007.  Google Scholar

[9]

E. J. CrampinW. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bulletin of Mathematical Biology, 64 (2002), 747-769.  doi: 10.1006/bulm.2002.0295.  Google Scholar

[10]

S. Dobberschutz, Homogenization Techniques for Lower Dimensional Structures, Doctoral dissertation, Bremen, Universität Bremen, Diss., 2012. Google Scholar

[11]

T. Giorgi and R. Smits, Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 224-245.  doi: 10.1007/s00033-005-0049-y.  Google Scholar

[12]

L. G. HarrisonS. Wehner and D. M. Holloway, Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth, Faraday Discuss, 120 (2001), 277-294.  doi: 10.1039/b103246c.  Google Scholar

[13]

U. Hornung, Homogenization and Porous Media, Springer Science & Business Media, Vol. 6, 2012. doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[14]

T. HouX. H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Mathematics of Computation, 68 (1999), 913-943.  doi: 10.1090/S0025-5718-99-01077-7.  Google Scholar

[15]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Dover, 1994.  Google Scholar

[16]

S. A. Meier, Two-Scale Models for Reactive Transport and Evolving Microstructure, PhD thesis, Universität Bremen, 2008. Google Scholar

[17]

S. A. Meier and M. Böhm, A note on the construction of function spaces for distributed-microstructure models with spatially varying cell geometry, Int. J. Numer. Anal. Model, 5 (2008), 109-125.   Google Scholar

[18]

A. Muntean and T. L. Van Noorden, Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity., European Journal of Applied Mathematics, 24 (2013), 657-677.  doi: 10.1017/S0956792513000090.  Google Scholar

[19]

C. Nicholson and S. Hrabětová, Brain extracellular space: The final frontier of neuroscience, Biophysical Journal, 113 (2017), 2133-2142.  doi: 10.1016/j.bpj.2017.06.052.  Google Scholar

[20]

C. NicholsonP. Kamali-Zare and L. Tao, Brain extracellular space as a diffusion barrier,, Computing and Visualization in Science, 14 (2011), 309-325.  doi: 10.1007/s00791-012-0185-9.  Google Scholar

[21]

R. Nittka, Inhomogeneous parabolic Neumann problems, Czechoslovak Mathematical Journal, 64 (2014), 703-742.  doi: 10.1007/s10587-014-0127-4.  Google Scholar

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623.  doi: 10.1137/0520043.  Google Scholar

[23]

F. Paronetto, An existence result for evolution equations in non-cylindrical domains, Nonlinear Differential Equations and Applications, 20 (2013), 1723-1740.  doi: 10.1007/s00030-013-0227-0.  Google Scholar

[24]

R. G. PlazaF. Sánchez-GarduñoP. PadillaR. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation, Journal of Dynamics and Differential Equations, 16 (2004), 1093-1121.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[25]

J. Pruss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser, Vol. 105, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[26]

M. Ptashnyk, Two-scale convergence for locally periodic microstructures and homogenization of plywood structures, Multiscale Modeling & Simulation, 11 (2013), 92–117. doi: 10.1137/120862338.  Google Scholar

[27]

M. Ptashnyk, Locally periodic unfolding method and two-scale convergence on surfaces of locally periodic microstructures, Multiscale Modeling & Simulation, 13 (2015), 1061–1105. doi: 10.1137/140978405.  Google Scholar

[28]

N. RayT. van NoordenF. Frank and P. Knabner, Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure, Transp. Porous Media, 95 (2012), 669-696.  doi: 10.1007/s11242-012-0068-z.  Google Scholar

[29]

N. RayT. L. van NoordenF. A. RaduW. Friess and P. Knabner, Drug release from collagen matrices including an evolving microstructure, ZAMM Z. Angew. Math. Mech., 93 (2013), 811-822.  doi: 10.1002/zamm.201200196.  Google Scholar

[30]

S. Reichelt., Two-Scale Homogenization of Systems of Nonlinear Parabolic Equations, PhD thesis, University of Berlin, 2015. Google Scholar

[31]

R. Schulz and P. Knabner, Derivation and analysis of an effective model for biofilm growth in evolving porous media, Math. Methods Appl. Sci., 40 (2016), 2930-2948.  doi: 10.1002/mma.4211.  Google Scholar

[32]

R. Schulz and P. Knabner, An effective model for biofilm growth made by chemotactical bacteria in evolving porous media, SIAM Journal on Applied Mathematics, 77 (2017), 1653-1677.  doi: 10.1137/16M108817X.  Google Scholar

[33]

V. A. Solonnikov., On the boundary value problems for linear parabolic systems of differential equations of general form. Proceedings of the Steklov Institute of Mathematics, 83 (1965). (English translation by American Mathematical Society, 1967)  Google Scholar

[34]

T. L. Van Noorden, Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments, Multiscale Modeling & Simulation, 7 (2009), 1220–1236. doi: 10.1137/080722096.  Google Scholar

[35]

T. L. Van Noorden and A. Muntean, Homogenization of a locally periodic medium with areas of low and high diffusivity, European Journal of Applied Mathematics, 22 (2011), 493-516.  doi: 10.1017/S0956792511000209.  Google Scholar

[36]

E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, 2011.  Google Scholar

[37]

M. Yousefnezhad, M. Fotouhi, K. Vejdani and P. Kamali-Zare, Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry, Physical Review E, 94 (2016), 032411. doi: 10.1103/PhysRevE.94.032411.  Google Scholar

Figure 1.  Schematic representation of a locally periodic heterogeneous medium in a time slice
Figure 2.  Schematic a non-cylindrical domain approximated by a family of cylindrical domains
[1]

Cristian Barbarosie, Anca-Maria Toader. Optimization of bodies with locally periodic microstructure by varying the periodicity pattern. Networks & Heterogeneous Media, 2014, 9 (3) : 433-451. doi: 10.3934/nhm.2014.9.433

[2]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[3]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[4]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[5]

Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011

[6]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[7]

Masahiro Kubo, Noriaki Yamazaki. Periodic stability of elliptic-parabolic variational inequalities with time-dependent boundary double obstacles. Conference Publications, 2007, 2007 (Special) : 614-623. doi: 10.3934/proc.2007.2007.614

[8]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[9]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[10]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[11]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[12]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[13]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[14]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[15]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[16]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[17]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[18]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[19]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[20]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (25)
  • HTML views (21)
  • Cited by (0)

Other articles
by authors

[Back to Top]