\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Averaging principle for stochastic real Ginzburg-Landau equation driven by $ \alpha $-stable process

  • * Corresponding author

    * Corresponding author 

Xiaobin Sun is supported by the National Natural Science Foundation of China (11601196, 11771187, 11931004), the NSF of Jiangsu Province (No. BK20160004) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. Jianliang Zhai is supported by the National Natural Science Foundation of China (11431014, 11671372, 11721101), the Fundamental Research Funds for the Central Universities (No. WK0010450002, WK3470000008), Key Research Program of Frontier Sciences, CAS, No: QYZDB-SSW-SYS009, School Start-up Fund (USTC) KY0010000036

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study a system of stochastic partial differential equations with slow and fast time-scales, where the slow component is a stochastic real Ginzburg-Landau equation and the fast component is a stochastic reaction-diffusion equation, the system is driven by cylindrical $ \alpha $-stable process with $ \alpha\in (1, 2) $. Using the classical Khasminskii approach based on time discretization and the techniques of stopping times, we show that the slow component strong converges to the solution of the corresponding averaged equation under some suitable conditions.

    Mathematics Subject Classification: Primary: 35R60; Secondary: 60H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. BaoG. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by $\alpha$-stable noises: averaging principles, Bernoulli, 23 (2017), 645-669.  doi: 10.3150/14-BEJ677.
    [2] N. N. Bogoliubov and Y. A. Mitropolsk, Asymptotic Methods in the Theory of Non-linear Oscillations, Gordon and Breach Science Publishers, New York, 1961.
    [3] C. E. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Process. Appl., 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.
    [4] S. Cerrai, A Khasminskii type averaging principle for stochastic reaction-diffusion equations, Ann. Appl. Probab., 19 (2009), 899-948.  doi: 10.1214/08-AAP560.
    [5] S. Cerrai, Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise, SIAM J. Math. Anal., 43 (2011), 2482-2518.  doi: 10.1137/100806710.
    [6] S. Cerrai and M. Freidli., Averaging principle for stochastic reaction-diffusion equations, Probab. Theory Related Fields, 144 (2009), 137-177.  doi: 10.1007/s00440-008-0144-z.
    [7] Z. DongX. SunH. Xiao and J. Zhai, Averaging principle for one dimensional stochastic Burgers equation, J. Differential Equations, 265 (2018), 4749-4797.  doi: 10.1016/j.jde.2018.06.020.
    [8] Z. DongL. Xu and X. Zhang, Invariance measures of stochastic 2D Navier-stokes equations driven by $\alpha$-stable processes, Electronic Communications in Probability, 16 (2011), 678-688.  doi: 10.1214/ECP.v16-1664.
    [9] Z. DongL. Xu and X. Zhang, Exponential ergodicity of stochastic Burgers equations driven by $\alpha$-stable processes, J. Stat. Phys., 154 (2014), 929-949.  doi: 10.1007/s10955-013-0881-y.
    [10] H. Fu and J. Liu, Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations, J. Math. Anal. Appl., 384 (2011), 70-86.  doi: 10.1016/j.jmaa.2011.02.076.
    [11] H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales, Stochastic Process. Appl., 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.
    [12] H. FuL. WanY. Wang and J. Liu, Strong convergence rate in averaging principle for stochastic FitzHugh-Nagumo system with two time-scales, J. Math. Anal. Appl., 416 (2014), 609-628.  doi: 10.1016/j.jmaa.2014.02.062.
    [13] P. Gao, Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation, Discrete Contin. Dyn. Syst.-A, 38 (2018), 5649-5684.  doi: 10.3934/dcds.2018247.
    [14] P. Gao, Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation, J. Stat. Phys., 171 (2018), 897-926.  doi: 10.1007/s10955-018-2048-3.
    [15] P. Gao, Averaging principle for multiscale stochastic Klein-Gordon-Heat system, J Nonlinear Sci., 29 (2019), 1701-1759.  doi: 10.1007/s00332-019-09529-4.
    [16] D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems, Multiscale Model. Simul., 6 (2007), 577-594.  doi: 10.1137/060673345.
    [17] D. GivonI. G. Kevrekidis and R. Kupferman, Strong convergence of projective integeration schemes for singularly perturbed stochastic differential systems, Comm. Math. Sci., 4 (2006), 707-729. 
    [18] J. Golec, Stochastic averaging principle for systems with pathwise uniqueness, Stochastic Anal. Appl., 13 (1995), 307-322.  doi: 10.1080/07362999508809400.
    [19] J. Golec and G. Ladde, Averaging principle and systems of singularly perturbed stochastic differential equations, J. Math. Phys., 31 (1990), 1116-1123.  doi: 10.1063/1.528792.
    [20] A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stoch. Anal. Appl., 4 (1986), 329-339.  doi: 10.1080/07362998608809094.
    [21] S. Li, X. Sun, Y. Xie and Y. Zhao, Averaging principle for two dimensional stochatsic Navier-Stokes equations, arXiv: 1810.02282.
    [22] D. Liu, Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., 8 (2010), 999-1020. 
    [23] W. Liu, M. Röckner, X. Sun and Y. Xie, Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, J. Differential Equations, (2019). doi: 10.1016/j.jde.2019.09.047.
    [24] Y. Liu and J. Zhai, A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise, C. R. Math. Acad. Sci. Paris, 350 (2012), 97-100.  doi: 10.1016/j.crma.2011.11.017.
    [25] R. Z. Khasminskii, On an averaging principle for Itô stochastic differential equations, Kibernetica, 4 (1968), 260-279. 
    [26] S. X. Ouyang, Harnack Inequalities and Applications for Stochastic Equations, Ph.D thesis, Bielefeld University, 2019.
    [27] B. PeiY. Xu and G. Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Anal., 160 (2017), 159-176.  doi: 10.1016/j.na.2017.05.005.
    [28] E. Priola and J. Zabczyk, Structural properties of semilinear SPDEs driven by cylindrical stable processes, Probability Theory and Related Fields, 149 (2011), 97-137.  doi: 10.1007/s00440-009-0243-5.
    [29] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999.
    [30] F. Y. Wang, Gradient estimate for Ornstein-Uhlenbeck jump processes, Stochastic Process. Appl., 121 (2011), 466-478.  doi: 10.1016/j.spa.2010.12.002.
    [31] W. Wang and A. J. Roberts, Average and deviation for slow-fast stochastic partial differential equations, J.Differential Equations, 253 (2012), 1265-1286.  doi: 10.1016/j.jde.2012.05.011.
    [32] W. WangA. J. Roberts and J. Duan, Large deviations and approximations for slow-fast stochastic reaction-diffusion equations, J.Differential Equations, 253 (2012), 3501-3522.  doi: 10.1016/j.jde.2012.08.041.
    [33] J. XuY. Miao and J. Liu, Strong averaging principle for slow-fast SPDEs with Poisson random measures, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2233-2256.  doi: 10.3934/dcdsb.2015.20.2233.
    [34] L. Xu, Ergodicity of the stochastic real Ginzburg-Landau equation driven by $\alpha$-stable noises, Stochastic Process. Appl., 123 (2013), 3710-3736.  doi: 10.1016/j.spa.2013.05.002.
    [35] Y. Xu, B. Pei and J.-L. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stoch. Dyn., 17 (2017), 1750013. doi: 10.1142/S0219493717500137.
    [36] X. Zhang, Derivative formulas and gradient estimates for SDEs driven by $\alpha$-stable processes, Stochastic Process. Appl., 123 (2013), 1213-1228.  doi: 10.1016/j.spa.2012.11.012.
  • 加载中
SHARE

Article Metrics

HTML views(840) PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return