March  2020, 19(3): 1321-1336. doi: 10.3934/cpaa.2020064

Admissibility and polynomial dichotomies for evolution families

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

Received  March 2019 Revised  July 2019 Published  November 2019

Fund Project: The author is supported by the University of Rijeka under the project uniri-prirod-18-9.

For an arbitrary evolution family, we consider the notion of a polynomial dichotomy with respect to a family of norms and characterize it in terms of the admissibility property, that is, the existence of a unique bounded solution for each bounded perturbation. In particular, by considering a family of Lyapunov norms, we recover the notion of a (strong) nonuniform polynomial dichotomy. As a nontrivial application of the characterization, we establish the robustness of the notion of a strong nonuniform polynomial dichotomy under sufficiently small linear perturbations.

Citation: Davor Dragičević. Admissibility and polynomial dichotomies for evolution families. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1321-1336. doi: 10.3934/cpaa.2020064
References:
[1]

L. BarreiraD. Dragičević and C. Valls, Strong and weak $(L^p, L^q)$-admissibility, Bull. Sci. Math., 138 (2014), 721-741.  doi: 10.1016/j.bulsci.2013.11.005.

[2]

L. BarreiraD. Dragičević and C. Valls, Admissibility on the half line for evolution families, J. Anal. Math., 132 (2017), 157-176.  doi: 10.1007/s11854-017-0017-4.

[3]

L. Barreira, D. Dragičević and C. Valls, Admissibility and Hyperbolicity, Springer Briefs in Mathematics, Springer, Cham, 2018. doi: 10.1007/978-3-319-90110-7.

[4]

L. Barreira and C. Valls, Growth rates and nonuniform hyperbolicity, Discrete Contin. Dyn. Syst., 22 (2008), 509-528.  doi: 10.3934/dcds.2008.22.509.

[5]

L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 71 (2009), 5208-5219.  doi: 10.1016/j.na.2009.04.005.

[6]

L. Barreira and C. Valls, Robustness of noninvertible dichotomies, J. Math. Soc. Japan, 67 (2015), 293-317.  doi: 10.2969/jmsj/06710293.

[7]

A. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122-148.  doi: 10.1016/j.jfa.2009.01.032.

[8]

A. Bento and C. Silva, Stable manifolds for nonautonomous equations with nonuniform polynomial dichotomies, Q. J. Math., 63 (2012), 275-308.  doi: 10.1093/qmath/haq047.

[9]

W. Coppel, Dichotomies in Stability Theory, Lect. Notes. in Math., 629, Springer-Verlag, Berlin-New York, 1979. doi: 10.1007/BFb0067780.

[10]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, 43, American Mathematical Society, Providence, R.I., 1974.

[11]

D. Dragičević, Admissibility and nonuniform polynomial dichotomies, Math. Nachr., to appear.

[12]

P. V. Hai, On the polynomial stability of evolution families, Appl. Anal., 95 (2016), 1239-1255.  doi: 10.1080/00036811.2015.1058364.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981 doi: 10.1007/BFb0089647.

[14]

N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.  doi: 10.1016/j.jfa.2005.11.002.

[15]

Y. LatushkinT. Randolph and R. Schnaubelt, Exponential dichotomy and mild solution of nonautonomous equations in Banach spaces, J. Dynam. Differential Equations, 10 (1998), 489-510.  doi: 10.1023/A:1022609414870.

[16]

T. Li, Die Stabilitätsfrage bei Differenzengleichungen, Acta Math., 63 (1934), 99-141.  doi: 10.1007/BF02547352.

[17]

N. Lupa and L. H. Popescu, Admissible Banach function spaces for linear dynamics with nonuniform behavior on the half-line, Semigroup Forum, 98 (2019), 184-208.  doi: 10.1007/s00233-018-9985-7.

[18]

J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis, I, Ann. of Math. (2), 67 (1958), 517–573. doi: 10.2307/1969871.

[19]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Academic Press, New York-London, 1966.

[20]

M. MeganA. L. Sasu and B. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory, 44 (2002), 71-78.  doi: 10.1007/BF01197861.

[21]

J. S. Muldowney, Dichotomies and asymptotic behaviour for linear differential systems, Trans. Amer. Math. Soc., 283 (1984), 465-484.  doi: 10.2307/1999142.

[22]

R. Naulin and M. Pinto, Roughness of $(h, k)$-dichotomies, J. Differential Equations, 118 (1995), 20-35.  doi: 10.1006/jdeq.1995.1065.

[23]

R. Naulin and M. Pinto, Stability of discrete dichotomies for linear difference systems, J. Difference Equ. Appl., 3 (1997), 101-123.  doi: 10.1080/10236199708808090.

[24]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.  doi: 10.1007/BF01194662.

[25]

P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces, Bull. Austral. Math. Soc., 27 (1983), 31-52.  doi: 10.1017/S0004972700011473.

[26]

P. PredaA. Pogan and C. Preda, $(L^p, L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418.  doi: 10.1007/s00020-002-1268-7.

[27]

P. PredaA. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differential Equations, 230 (2006), 378-391.  doi: 10.1016/j.jde.2006.02.004.

[28]

A. L. SasuM. G. Babutia and B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 137 (2013), 466-484.  doi: 10.1016/j.bulsci.2012.11.002.

[29]

A. L. Sasu and B. Sasu, Exponential dichotomy on the real line and admissibility of function spaces, Integral Equations Operator Theory, 54 (2006), 113-130.  doi: 10.1007/s00020-004-1347-z.

[30]

A. L. Sasu and B. Sasu, Exponential trichotomy and p-admissibility for evolution families on the real line, Math. Z., 253 (2006), 515-536.  doi: 10.1007/s00209-005-0920-8.

[31]

A. L. Sasu and B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integral Equations Operator Theory, 66 (2010), 113-140.  doi: 10.1007/s00020-009-1735-5.

[32]

N. Van MinhF. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353.  doi: 10.1007/BF01203774.

[33]

L. Zhou and W. Zhang, Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.  doi: 10.1016/j.jfa.2016.06.005.

[34]

L. ZhouK. Lu and W. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, 262 (2017), 682-747.  doi: 10.1016/j.jde.2016.09.035.

show all references

References:
[1]

L. BarreiraD. Dragičević and C. Valls, Strong and weak $(L^p, L^q)$-admissibility, Bull. Sci. Math., 138 (2014), 721-741.  doi: 10.1016/j.bulsci.2013.11.005.

[2]

L. BarreiraD. Dragičević and C. Valls, Admissibility on the half line for evolution families, J. Anal. Math., 132 (2017), 157-176.  doi: 10.1007/s11854-017-0017-4.

[3]

L. Barreira, D. Dragičević and C. Valls, Admissibility and Hyperbolicity, Springer Briefs in Mathematics, Springer, Cham, 2018. doi: 10.1007/978-3-319-90110-7.

[4]

L. Barreira and C. Valls, Growth rates and nonuniform hyperbolicity, Discrete Contin. Dyn. Syst., 22 (2008), 509-528.  doi: 10.3934/dcds.2008.22.509.

[5]

L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 71 (2009), 5208-5219.  doi: 10.1016/j.na.2009.04.005.

[6]

L. Barreira and C. Valls, Robustness of noninvertible dichotomies, J. Math. Soc. Japan, 67 (2015), 293-317.  doi: 10.2969/jmsj/06710293.

[7]

A. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal., 257 (2009), 122-148.  doi: 10.1016/j.jfa.2009.01.032.

[8]

A. Bento and C. Silva, Stable manifolds for nonautonomous equations with nonuniform polynomial dichotomies, Q. J. Math., 63 (2012), 275-308.  doi: 10.1093/qmath/haq047.

[9]

W. Coppel, Dichotomies in Stability Theory, Lect. Notes. in Math., 629, Springer-Verlag, Berlin-New York, 1979. doi: 10.1007/BFb0067780.

[10]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, 43, American Mathematical Society, Providence, R.I., 1974.

[11]

D. Dragičević, Admissibility and nonuniform polynomial dichotomies, Math. Nachr., to appear.

[12]

P. V. Hai, On the polynomial stability of evolution families, Appl. Anal., 95 (2016), 1239-1255.  doi: 10.1080/00036811.2015.1058364.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981 doi: 10.1007/BFb0089647.

[14]

N. T. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.  doi: 10.1016/j.jfa.2005.11.002.

[15]

Y. LatushkinT. Randolph and R. Schnaubelt, Exponential dichotomy and mild solution of nonautonomous equations in Banach spaces, J. Dynam. Differential Equations, 10 (1998), 489-510.  doi: 10.1023/A:1022609414870.

[16]

T. Li, Die Stabilitätsfrage bei Differenzengleichungen, Acta Math., 63 (1934), 99-141.  doi: 10.1007/BF02547352.

[17]

N. Lupa and L. H. Popescu, Admissible Banach function spaces for linear dynamics with nonuniform behavior on the half-line, Semigroup Forum, 98 (2019), 184-208.  doi: 10.1007/s00233-018-9985-7.

[18]

J. L. Massera and J. J. Schäffer, Linear differential equations and functional analysis, I, Ann. of Math. (2), 67 (1958), 517–573. doi: 10.2307/1969871.

[19]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Academic Press, New York-London, 1966.

[20]

M. MeganA. L. Sasu and B. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory, 44 (2002), 71-78.  doi: 10.1007/BF01197861.

[21]

J. S. Muldowney, Dichotomies and asymptotic behaviour for linear differential systems, Trans. Amer. Math. Soc., 283 (1984), 465-484.  doi: 10.2307/1999142.

[22]

R. Naulin and M. Pinto, Roughness of $(h, k)$-dichotomies, J. Differential Equations, 118 (1995), 20-35.  doi: 10.1006/jdeq.1995.1065.

[23]

R. Naulin and M. Pinto, Stability of discrete dichotomies for linear difference systems, J. Difference Equ. Appl., 3 (1997), 101-123.  doi: 10.1080/10236199708808090.

[24]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.  doi: 10.1007/BF01194662.

[25]

P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces, Bull. Austral. Math. Soc., 27 (1983), 31-52.  doi: 10.1017/S0004972700011473.

[26]

P. PredaA. Pogan and C. Preda, $(L^p, L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418.  doi: 10.1007/s00020-002-1268-7.

[27]

P. PredaA. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differential Equations, 230 (2006), 378-391.  doi: 10.1016/j.jde.2006.02.004.

[28]

A. L. SasuM. G. Babutia and B. Sasu, Admissibility and nonuniform exponential dichotomy on the half-line, Bull. Sci. Math., 137 (2013), 466-484.  doi: 10.1016/j.bulsci.2012.11.002.

[29]

A. L. Sasu and B. Sasu, Exponential dichotomy on the real line and admissibility of function spaces, Integral Equations Operator Theory, 54 (2006), 113-130.  doi: 10.1007/s00020-004-1347-z.

[30]

A. L. Sasu and B. Sasu, Exponential trichotomy and p-admissibility for evolution families on the real line, Math. Z., 253 (2006), 515-536.  doi: 10.1007/s00209-005-0920-8.

[31]

A. L. Sasu and B. Sasu, Integral equations, dichotomy of evolution families on the half-line and applications, Integral Equations Operator Theory, 66 (2010), 113-140.  doi: 10.1007/s00020-009-1735-5.

[32]

N. Van MinhF. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353.  doi: 10.1007/BF01203774.

[33]

L. Zhou and W. Zhang, Admissibility and roughness of nonuniform exponential dichotomies for difference equations, J. Funct. Anal., 271 (2016), 1087-1129.  doi: 10.1016/j.jfa.2016.06.005.

[34]

L. ZhouK. Lu and W. Zhang, Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, 262 (2017), 682-747.  doi: 10.1016/j.jde.2016.09.035.

[1]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[2]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[3]

César M. Silva. Admissibility and generalized nonuniform dichotomies for discrete dynamics. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3419-3443. doi: 10.3934/cpaa.2021112

[4]

Luis Barreira, Davor Dragičević, Claudia Valls. From one-sided dichotomies to two-sided dichotomies. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2817-2844. doi: 10.3934/dcds.2015.35.2817

[5]

Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853

[6]

A. Marigo. Robustness of square networks. Networks and Heterogeneous Media, 2009, 4 (3) : 537-575. doi: 10.3934/nhm.2009.4.537

[7]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[8]

Luis Barreira, Claudia Valls. Admissibility versus nonuniform exponential behavior for noninvertible cocycles. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1297-1311. doi: 10.3934/dcds.2013.33.1297

[9]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[10]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[11]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[12]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure and Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[13]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[14]

Xuefeng Zhang, Zhe Wang. Alternative criteria for admissibility and stabilization of singular fractional order systems. Mathematical Foundations of Computing, 2019, 2 (3) : 267-277. doi: 10.3934/mfc.2019017

[15]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[16]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[17]

Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429

[18]

Florian Dumpert. Quantitative robustness of localized support vector machines. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3947-3956. doi: 10.3934/cpaa.2020174

[19]

Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011

[20]

Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (261)
  • HTML views (70)
  • Cited by (1)

Other articles
by authors

[Back to Top]