    March  2020, 19(3): 1337-1349. doi: 10.3934/cpaa.2020065

## Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation

 1 School of mathematics and statistics, Anhui normal university, Wuhu, 241002, China 2 School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

* Corresponding author

Received  March 2019 Revised  July 2019 Published  November 2019

Fund Project: The work was supported by National Natural Science Foundation of China (11871096 and 11671308)

In this paper, we consider equations involving the fully nonlinear fractional order operator with homogeneous Dirichlet condition:
 $\begin{cases} F_\alpha(u)(x) = f(x,u,\nabla u) \ \mbox{in} \ \Omega,\\ u>0, \ \mbox{in}\ \Omega; \ u\equiv0, \ \mbox{in}\ \mathbb R^n\backslash\Omega, \end{cases}$
where
 $\Omega$
is a domain(bounded or unbounded) in
 $\mathbb R^n$
which is convex in
 $x_1-$
direction. By using some ideas of maximum principle, we prove that the solution is strictly increasing in
 $x_1-$
direction in the left half of
 $\Omega$
. Symmetry of solution is also proved. Meanwhile we obtain a Liouville type theorem on the half space
 $\mathbb R^n_+$
.
Citation: Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065
##### References:
  C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar  L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar  W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar  W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18. doi: 10.1007/s00526-017-1110-3.  Google Scholar  W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar  W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar  T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12. doi: 10.1142/S0219199717500183.  Google Scholar  Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar  R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar  X. Han, G. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar  F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1-21.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar  Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar  C. Li, Z. Wu and H. Xu, Maximum principles and bôcher type theorems, Proceedings of the National Academy of Sciences, 115 (2018), 6976-6979.  doi: 10.1073/pnas.1804225115.  Google Scholar  G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42 (2011), 563-577.  doi: 10.1007/s00526-011-0398-7.  Google Scholar  G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar  P. Niu, L. Wu and X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Fractional Calculus and Applied Analysis, 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar  Y. Wang and J. Wang, The method of moving planes for integral equation in an extremal case, J. Partial Differ. Equ., 29 (2016), 246-254.  doi: 10.4208/jpde.v29.n3.6.  Google Scholar

show all references

##### References:
  C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar  L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.  Google Scholar  W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar  W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Art. 29, 18. doi: 10.1007/s00526-017-1110-3.  Google Scholar  W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar  W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar  W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.  Google Scholar  T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12. doi: 10.1142/S0219199717500183.  Google Scholar  Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar  R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar  X. Han, G. Lu and J. Zhu, Characterization of balls in terms of Bessel-potential integral equation, J. Differential Equations, 252 (2012), 1589-1602.  doi: 10.1016/j.jde.2011.07.037.  Google Scholar  F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar  F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1-21.  doi: 10.1016/j.anihpc.2007.03.006.  Google Scholar  Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar  C. Li, Z. Wu and H. Xu, Maximum principles and bôcher type theorems, Proceedings of the National Academy of Sciences, 115 (2018), 6976-6979.  doi: 10.1073/pnas.1804225115.  Google Scholar  G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42 (2011), 563-577.  doi: 10.1007/s00526-011-0398-7.  Google Scholar  G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.  doi: 10.1016/j.na.2011.11.036.  Google Scholar  P. Niu, L. Wu and X. Ji, Positive solutions to nonlinear systems involving fully nonlinear fractional operators, Fractional Calculus and Applied Analysis, 21 (2018), 552-574.  doi: 10.1515/fca-2018-0030.  Google Scholar  Y. Wang and J. Wang, The method of moving planes for integral equation in an extremal case, J. Partial Differ. Equ., 29 (2016), 246-254.  doi: 10.4208/jpde.v29.n3.6.  Google Scholar
  Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082  Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1  Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021  Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201  Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991  Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451  Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi, Gregory I. Sivashinsky. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1415-1446. doi: 10.3934/dcds.2010.27.1415  Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71  Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019  Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175  Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263  Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109  Qianzhong Ou. Nonexistence results for a fully nonlinear evolution inequality. Electronic Research Announcements, 2016, 23: 19-24. doi: 10.3934/era.2016.23.003  Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845  Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110  Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152  Li Jin, Hongying Huang. Differential equation method based on approximate augmented Lagrangian for nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019053  Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019045  Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015  Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034

2018 Impact Factor: 0.925