In this paper, we investigate the following Choquard equation
$ \begin{equation*} -\Delta u+V(x)u = \lambda(I_\alpha*F(u))f(u) \ \ \ \ \ \ {\rm in} \ \mathbb{R}^N, \end{equation*} $
where $ N\geq 3, \lambda>0, \alpha\in (0, N) $, $ V $ is an asymptotically periodic potential, $ I_\alpha $ is the Riesz potential, the nonlinearity term $ F(s) = \int_{0}^{s}f(t)dt $ and $ f $ is only locally defined in a neighborhood of $ u = 0 $ and satisfies the suitable conditions. By using the Nehari manifold and the Moser iteration, we prove the existence of positive solutions for the equation with sufficiently large $ \lambda $.
Citation: |
[1] |
C. O. Alves, G. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Adv. Nonlinear Anal., 5 (2016), 331-345.
doi: 10.1515/anona-2015-0123.![]() ![]() ![]() |
[2] |
C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), Art. 48, 28.
doi: 10.1007/s00526-016-0984-9.![]() ![]() ![]() |
[3] |
C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257 (2014), 4133-4164.
doi: 10.1016/j.jde.2014.08.004.![]() ![]() ![]() |
[4] |
T. Bartsch, Z.-Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in Stationary Partial Differential Equations. Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, 1–55.
doi: 10.1016/S1874-5733(05)80009-9.![]() ![]() ![]() |
[5] |
S. Chen and L. Xiao, Existence of a nontrivial solution for a strongly indefinite periodic Choquard system, Calc. Var. Partial Differential Equations, 54 (2015), 599-614.
doi: 10.1007/s00526-014-0797-7.![]() ![]() ![]() |
[6] |
C. Chu and H. Liu, Existence of positive solutions for a quasilinear Schrödinger equation, Nonlinear Anal. Real World Appl., 44 (2018), 118-127.
doi: 10.1016/j.nonrwa.2018.04.007.![]() ![]() ![]() |
[7] |
D. G. Costa and Z.-Q. Wang, Multiplicity results for a class of superlinear elliptic problems, Proc. Amer. Math. Soc., 133 (2005), 787-794.
doi: 10.1090/S0002-9939-04-07635-X.![]() ![]() ![]() |
[8] |
J. M. do Ó, E. Medeiros and U. Severo, On the existence of signed and sign-changing solutions for a class of superlinear Schrödinger equations, J. Math. Anal. Appl., 342 (2008), 432-445.
doi: 10.1016/j.jmaa.2007.11.058.![]() ![]() ![]() |
[9] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037, 22.
doi: 10.1142/S0219199717500377.![]() ![]() ![]() |
[10] |
M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.
doi: 10.1016/j.jfa.2016.04.019.![]() ![]() ![]() |
[11] |
L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955-967.
doi: 10.1016/j.jmaa.2015.10.075.![]() ![]() ![]() |
[12] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1976/77), 93-105.
doi: 10.1002/sapm197757293.![]() ![]() ![]() |
[13] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.
![]() ![]() |
[14] |
J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335.![]() ![]() ![]() |
[15] |
J. Liu, J.-F. Liao and C.-L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965-976.
doi: 10.1016/j.camwa.2016.01.004.![]() ![]() ![]() |
[16] |
S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016.![]() ![]() ![]() |
[17] |
X. Liu, S. Ma and X. Zhang, Infinitely many bound state solutions of Choquard equations with potentials, Z. Angew. Math. Phys., 69 (2018), Art. 118, 29.
doi: 10.1007/s00033-018-1015-9.![]() ![]() ![]() |
[18] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[19] |
G. P. Menzala, On regular solutions of a nonlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (1980), 291-301.
doi: 10.1017/S0308210500012191.![]() ![]() ![]() |
[20] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[21] |
V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2.![]() ![]() ![]() |
[22] |
V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015), 199-235.
doi: 10.1007/s00526-014-0709-x.![]() ![]() ![]() |
[23] |
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1.![]() ![]() ![]() |
[24] |
S. I. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie-verlag, 1954.
![]() |
[25] |
M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc. (2), 44 (1991), 491–502.
doi: 10.1112/jlms/s2-44.3.491.![]() ![]() ![]() |
[26] |
Z. Shen, F. Gao and M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dyn. Syst., 38 (2018), 3567-3593.
doi: 10.3934/dcds.2018151.![]() ![]() ![]() |
[27] |
J. Van Schaftingen and J. Xia, Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 1, 24.
doi: 10.1007/s00030-016-0424-8.![]() ![]() ![]() |
[28] |
M. Willem, Minimax Theorems, vol. 24, Springer Science and Business Media, 1997.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[29] |
H. Zhang, J. Xu and F. Zhang, Bound and ground states for a concave-convex generalized Choquard equation, Acta Appl. Math., 147 (2017), 81-93.
doi: 10.1007/s10440-016-0069-y.![]() ![]() ![]() |
[30] |
H. Zhang, J. Xu and F. Zhang, Existence and multiplicity of solutions for a generalized Choquard equation, Comput. Math. Appl., 73 (2017), 1803-1814.
doi: 10.1016/j.camwa.2017.02.026.![]() ![]() ![]() |