-
Previous Article
Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian
- CPAA Home
- This Issue
-
Next Article
Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold
Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China |
The interior transmission eigenvalue problem plays a basic role in the study of inverse scattering problems for an inhomogeneous medium. In this paper, we consider the electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with conductive boundary. Our main focus is to understand the associated eigenvalue problem, more specifically to prove the transmission eigenvalues form a discrete set and show that they exist by employing a variety of variational techniques under various assumptions on the index of refraction.
References:
[1] |
O. Bondarenko, I. Harris and A. Kleefeld,
The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.
doi: 10.1080/00036811.2016.1204440. |
[2] |
F. Cakoni, H. Haddar and S. Meng,
Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.
doi: 10.1216/JIE-2015-27-3-375. |
[3] |
L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14.
doi: 10.1088/0266-5611/28/6/065005. |
[4] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. |
[5] |
F. Cakoni, D. Colton and H. Haddar,
On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003. |
[6] |
F. Cakoni, D. Colton and H. Haddar,
The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.
doi: 10.1137/090754637. |
[7] |
F. Cakoni, A. Cossonnière and H. Haddar,
Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.
doi: 10.3934/ipi.2012.6.373. |
[8] |
F. Cakoni, D. Gintides and H. Haddar,
The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338. |
[9] |
F. Cakoni and H. Haddar,
On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.
doi: 10.1080/00036810802713966. |
[10] |
F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3.
doi: 10.1088/0266-5611/29/10/100201. |
[11] |
F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge. |
[12] |
A. Cossonnière and H. Haddar,
Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.
doi: 10.1216/JIE-2013-25-3-341. |
[13] |
A. Cossonnière and H. Haddar,
The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.
doi: 10.1137/100813890. |
[14] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[15] |
C. Hazard and M. Lenoir,
On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.
doi: 10.1137/S0036141094271259. |
[16] |
D. Colton, L. Päivärinta and J. Sylvester,
The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.
doi: 10.3934/ipi.2007.1.13. |
[17] |
G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23.
doi: 10.1088/0266-5611/28/5/055009. |
[18] |
H. Haddar,
The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.
doi: 10.1002/mma.465. |
[19] |
I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21.
doi: 10.1088/0266-5611/30/3/035016. |
[20] |
H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar |
[21] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.
![]() |
[22] |
A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21.
doi: 10.1088/0266-5611/29/10/104011. |
[23] |
J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar |
[24] |
E. Lakshtanov and B. Vainberg,
Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.
doi: 10.1137/11084738X. |
[25] |
E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19.
doi: 10.1088/0266-5611/29/10/104003. |
[26] |
P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.![]() ![]() |
[27] |
L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28.
doi: 10.1088/0266-5611/29/10/104001. |
[28] |
J. Sylvester,
Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
[29] |
F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34.
doi: 10.1088/0266-5611/30/1/015007. |
show all references
References:
[1] |
O. Bondarenko, I. Harris and A. Kleefeld,
The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.
doi: 10.1080/00036811.2016.1204440. |
[2] |
F. Cakoni, H. Haddar and S. Meng,
Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.
doi: 10.1216/JIE-2015-27-3-375. |
[3] |
L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14.
doi: 10.1088/0266-5611/28/6/065005. |
[4] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. |
[5] |
F. Cakoni, D. Colton and H. Haddar,
On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003. |
[6] |
F. Cakoni, D. Colton and H. Haddar,
The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.
doi: 10.1137/090754637. |
[7] |
F. Cakoni, A. Cossonnière and H. Haddar,
Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.
doi: 10.3934/ipi.2012.6.373. |
[8] |
F. Cakoni, D. Gintides and H. Haddar,
The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338. |
[9] |
F. Cakoni and H. Haddar,
On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.
doi: 10.1080/00036810802713966. |
[10] |
F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3.
doi: 10.1088/0266-5611/29/10/100201. |
[11] |
F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge. |
[12] |
A. Cossonnière and H. Haddar,
Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.
doi: 10.1216/JIE-2013-25-3-341. |
[13] |
A. Cossonnière and H. Haddar,
The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.
doi: 10.1137/100813890. |
[14] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[15] |
C. Hazard and M. Lenoir,
On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.
doi: 10.1137/S0036141094271259. |
[16] |
D. Colton, L. Päivärinta and J. Sylvester,
The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.
doi: 10.3934/ipi.2007.1.13. |
[17] |
G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23.
doi: 10.1088/0266-5611/28/5/055009. |
[18] |
H. Haddar,
The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.
doi: 10.1002/mma.465. |
[19] |
I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21.
doi: 10.1088/0266-5611/30/3/035016. |
[20] |
H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar |
[21] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.
![]() |
[22] |
A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21.
doi: 10.1088/0266-5611/29/10/104011. |
[23] |
J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar |
[24] |
E. Lakshtanov and B. Vainberg,
Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.
doi: 10.1137/11084738X. |
[25] |
E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19.
doi: 10.1088/0266-5611/29/10/104003. |
[26] |
P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.![]() ![]() |
[27] |
L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28.
doi: 10.1088/0266-5611/29/10/104001. |
[28] |
J. Sylvester,
Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
[29] |
F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34.
doi: 10.1088/0266-5611/30/1/015007. |
[1] |
Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155 |
[2] |
Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39 |
[3] |
Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017 |
[4] |
Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123 |
[5] |
Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167 |
[6] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[7] |
Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373 |
[8] |
Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795 |
[9] |
Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273 |
[10] |
Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825 |
[11] |
Michela Eleuteri. An existence result for a P.D.E. with hysteresis, convection and a nonlinear boundary condition. Conference Publications, 2007, 2007 (Special) : 344-353. doi: 10.3934/proc.2007.2007.344 |
[12] |
Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725 |
[13] |
Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041 |
[14] |
Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031 |
[15] |
Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034 |
[16] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[17] |
C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69 |
[18] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040 |
[19] |
Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 |
[20] |
Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]