March  2020, 19(3): 1387-1397. doi: 10.3934/cpaa.2020068

Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China

Received  March 2019 Revised  September 2019 Published  November 2019

The interior transmission eigenvalue problem plays a basic role in the study of inverse scattering problems for an inhomogeneous medium. In this paper, we consider the electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with conductive boundary. Our main focus is to understand the associated eigenvalue problem, more specifically to prove the transmission eigenvalues form a discrete set and show that they exist by employing a variety of variational techniques under various assumptions on the index of refraction.

Citation: Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068
References:
[1]

O. BondarenkoI. Harris and A. Kleefeld, The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.  doi: 10.1080/00036811.2016.1204440.  Google Scholar

[2]

F. CakoniH. Haddar and S. Meng, Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.  Google Scholar

[3]

L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14. doi: 10.1088/0266-5611/28/6/065005.  Google Scholar

[4]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.  Google Scholar

[5]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[6]

F. CakoniD. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.  doi: 10.1137/090754637.  Google Scholar

[7]

F. CakoniA. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.  doi: 10.3934/ipi.2012.6.373.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[10]

F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3. doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[11]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge.  Google Scholar

[12]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.  Google Scholar

[13]

A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.  doi: 10.1137/100813890.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[15]

C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.  doi: 10.1137/S0036141094271259.  Google Scholar

[16]

D. ColtonL. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[17]

G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23. doi: 10.1088/0266-5611/28/5/055009.  Google Scholar

[18]

H. Haddar, The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.  doi: 10.1002/mma.465.  Google Scholar

[19]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21. doi: 10.1088/0266-5611/30/3/035016.  Google Scholar

[20]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar

[21] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.   Google Scholar
[22]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[23]

J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar

[24]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.  doi: 10.1137/11084738X.  Google Scholar

[25]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19. doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[26] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[27]

L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[28]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

[29]

F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34. doi: 10.1088/0266-5611/30/1/015007.  Google Scholar

show all references

References:
[1]

O. BondarenkoI. Harris and A. Kleefeld, The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.  doi: 10.1080/00036811.2016.1204440.  Google Scholar

[2]

F. CakoniH. Haddar and S. Meng, Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.  Google Scholar

[3]

L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14. doi: 10.1088/0266-5611/28/6/065005.  Google Scholar

[4]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.  Google Scholar

[5]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[6]

F. CakoniD. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.  doi: 10.1137/090754637.  Google Scholar

[7]

F. CakoniA. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.  doi: 10.3934/ipi.2012.6.373.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[10]

F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3. doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[11]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge.  Google Scholar

[12]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.  Google Scholar

[13]

A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.  doi: 10.1137/100813890.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[15]

C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.  doi: 10.1137/S0036141094271259.  Google Scholar

[16]

D. ColtonL. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[17]

G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23. doi: 10.1088/0266-5611/28/5/055009.  Google Scholar

[18]

H. Haddar, The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.  doi: 10.1002/mma.465.  Google Scholar

[19]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21. doi: 10.1088/0266-5611/30/3/035016.  Google Scholar

[20]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar

[21] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.   Google Scholar
[22]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[23]

J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar

[24]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.  doi: 10.1137/11084738X.  Google Scholar

[25]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19. doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[26] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[27]

L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[28]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

[29]

F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34. doi: 10.1088/0266-5611/30/1/015007.  Google Scholar

[1]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[2]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[3]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[4]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[5]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[6]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[7]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[8]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[9]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

[10]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

[11]

Michela Eleuteri. An existence result for a P.D.E. with hysteresis, convection and a nonlinear boundary condition. Conference Publications, 2007, 2007 (Special) : 344-353. doi: 10.3934/proc.2007.2007.344

[12]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[13]

Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041

[14]

Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031

[15]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69

[18]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040

[19]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[20]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (16)
  • Cited by (0)

Other articles
by authors

[Back to Top]