March  2020, 19(3): 1387-1397. doi: 10.3934/cpaa.2020068

Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R.China

Received  March 2019 Revised  September 2019 Published  November 2019

The interior transmission eigenvalue problem plays a basic role in the study of inverse scattering problems for an inhomogeneous medium. In this paper, we consider the electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with conductive boundary. Our main focus is to understand the associated eigenvalue problem, more specifically to prove the transmission eigenvalues form a discrete set and show that they exist by employing a variety of variational techniques under various assumptions on the index of refraction.

Citation: Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068
References:
[1]

O. BondarenkoI. Harris and A. Kleefeld, The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.  doi: 10.1080/00036811.2016.1204440.  Google Scholar

[2]

F. CakoniH. Haddar and S. Meng, Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.  Google Scholar

[3]

L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14. doi: 10.1088/0266-5611/28/6/065005.  Google Scholar

[4]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.  Google Scholar

[5]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[6]

F. CakoniD. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.  doi: 10.1137/090754637.  Google Scholar

[7]

F. CakoniA. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.  doi: 10.3934/ipi.2012.6.373.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[10]

F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3. doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[11]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge.  Google Scholar

[12]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.  Google Scholar

[13]

A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.  doi: 10.1137/100813890.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[15]

C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.  doi: 10.1137/S0036141094271259.  Google Scholar

[16]

D. ColtonL. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[17]

G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23. doi: 10.1088/0266-5611/28/5/055009.  Google Scholar

[18]

H. Haddar, The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.  doi: 10.1002/mma.465.  Google Scholar

[19]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21. doi: 10.1088/0266-5611/30/3/035016.  Google Scholar

[20]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar

[21] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.   Google Scholar
[22]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[23]

J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar

[24]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.  doi: 10.1137/11084738X.  Google Scholar

[25]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19. doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[26] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[27]

L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[28]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

[29]

F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34. doi: 10.1088/0266-5611/30/1/015007.  Google Scholar

show all references

References:
[1]

O. BondarenkoI. Harris and A. Kleefeld, The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary, Appl. Anal., 96 (2017), 2-22.  doi: 10.1080/00036811.2016.1204440.  Google Scholar

[2]

F. CakoniH. Haddar and S. Meng, Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations, J. Integral Equations Appl., 27 (2015), 375-406.  doi: 10.1216/JIE-2015-27-3-375.  Google Scholar

[3]

L. Chesnel, Interior transmission eigenvalue problem for Maxwell's equations: the T-coercivity as an alternative approach, Inverse Probl., 28 (2012), 065005, 14. doi: 10.1088/0266-5611/28/6/065005.  Google Scholar

[4]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006.  Google Scholar

[5]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[6]

F. CakoniD. Colton and H. Haddar, The interior transmission problem for regions with cavities, SIAM J. Math. Anal., 42 (2017), 145-162.  doi: 10.1137/090754637.  Google Scholar

[7]

F. CakoniA. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Probl. Imaging, 6 (2012), 373-398.  doi: 10.3934/ipi.2012.6.373.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[10]

F. Cakoni and H. Haddar, Transmission eigenvalues[Editorial], Inverse Probl., 29 (2013), 100201, 3. doi: 10.1088/0266-5611/29/10/100201.  Google Scholar

[11]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, In Inverse problems and applications: inside out. Ⅱ, Sci. Res. Inst. Publ., 60 (2013), 529–580, Cambridge Univ. Press, Cambridge.  Google Scholar

[12]

A. Cossonnière and H. Haddar, Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.  doi: 10.1216/JIE-2013-25-3-341.  Google Scholar

[13]

A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal., 43 (2011), 1698-1715.  doi: 10.1137/100813890.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, third edition. Springer, New York, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[15]

C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations, SIAM J. Math. Anal., 27 (1996), 1597-1630.  doi: 10.1137/S0036141094271259.  Google Scholar

[16]

D. ColtonL. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Probl. Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[17]

G. Giorgi and H. Haddar, Computing estimates of material properties from transmission eigenvalues, Inverse Probl., 28 (2012), 055009, 23. doi: 10.1088/0266-5611/28/5/055009.  Google Scholar

[18]

H. Haddar, The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem, Math. Methods Appl. Sci., 27 (2004), 2111-2129.  doi: 10.1002/mma.465.  Google Scholar

[19]

I. Harris, F. Cakoni and J. Sun, Transmission eigenvalues and non-destructive testing of anisotropic magnetic materials with voids, Inverse Probl., 30 (2014), 035016, 21. doi: 10.1088/0266-5611/30/3/035016.  Google Scholar

[20]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for maxwells equations, arXiv: 1707.04815v2. Google Scholar

[21] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its ApplicationsOxford University Press, Oxford, 2008.   Google Scholar
[22]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Probl., 29 (2013), 104011, 21. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[23]

J. Li, X. Li, H. Liu and Y. Wang, Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking, arXiv: 1701.05301v1. Google Scholar

[24]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal., 44 (2012), 1165-1174.  doi: 10.1137/11084738X.  Google Scholar

[25]

E. Lakshtanov and B. Vainberg, Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104003, 19. doi: 10.1088/0266-5611/29/10/104003.  Google Scholar

[26] P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar
[27]

L.Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Probl., 29 (2013), 104001, 28. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[28]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

[29]

F. Yang and P. Monk, The interior transmission problem for regions on a conducting surface, Inverse Probl., 30 (2014), 015007, 34. doi: 10.1088/0266-5611/30/1/015007.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (117)
  • HTML views (59)
  • Cited by (1)

Other articles
by authors

[Back to Top]