This paper deals with a chemotaxis-haptotaxis model with the slow $ p $-Laplacian diffusion in three-dimensional smooth bounded domains. It is proved that for any $ p>2 $, the chemotaxis-haptotaxis model problem admits a global bounded weak solution if $ \frac{\chi}{\mu} $ is appropriately small.
Citation: |
[1] | X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67 (2016), 11-13. doi: 10.1007/s00033-015-0601-3. |
[2] | M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1 (2006), 399-439. doi: 10.3934/nhm.2006.1.399. |
[3] | T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045. |
[4] | W. Cong and J. G. Liu, A degenerate p-Laplacian Keller-Segel model, Kinet. Relat. Models, 9 (2016), 687-714. doi: 10.3934/krm.2016012. |
[5] | D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. |
[6] | C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1675-1688. doi: 10.3934/dcdsb.2018069. |
[7] | C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bull. London Math. Soc., 50 (2018), 598-618. doi: 10.1112/blms.12160. |
[8] | E. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[9] | S. Kurima and M. Mizukami, Global weak solutions to a 3-dimensional degenerate and singular chemotaxis-Navier-Stokes system with logistic source, Nonlinear Anal. Real World Appl., 46 (2019), 98-115. doi: 10.1016/j.nonrwa.2018.09.011. |
[10] | G. Liţcanu and C. Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721-1758. doi: 10.1142/S0218202510004775. |
[11] | K. Lin, C. Mu and L. Wang, Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124. doi: 10.1016/j.jmaa.2014.12.052. |
[12] | M. Mei, H. Peng and Z. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), 5168-5191. doi: 10.1016/j.jde.2015.06.022. |
[13] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola. Norm. Sup. Pisa, 13 (1959), 115-162. |
[14] | C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. |
[15] | Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv: 1407.7382, (2014). |
[16] | W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal. Real Word Appl., 45 (2019), 26-52. doi: 10.1016/j.nonrwa.2018.06.005. |
[17] | Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678. doi: 10.4171/JEMS/749. |
[18] | Y. Tao and M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Appl., 47 (2015), 4229-4250. doi: 10.1137/15M1014115. |
[19] | Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 157-178. doi: 10.1016/j.anihpc.2012.07.002. |
[20] | Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704. doi: 10.1137/100802943. |
[21] | Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Differential Equations, 260 (2016), 1975-1989. doi: 10.1016/j.jde.2015.09.051. |
[22] | Y. Wang and Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, J. Differential Equations, 260 (2016), 6960-6988. doi: 10.1016/j.jde.2016.01.017. |
[23] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. |