• Previous Article
    Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data
March  2020, 19(3): 1449-1462. doi: 10.3934/cpaa.2020071

Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation

College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author

Received  April 2019 Revised  August 2019 Published  November 2019

Fund Project: This work was supported by National Natural Science Foundation of China (No. 11771214).

In this paper, we investigate positive viscosity solutions of a third degree homogeneous parabolic equation $ u^{2}u_{t} = \Delta_{\infty}u $. We prove a comparison principle, existence and uniqueness of continuous positive viscosity solutions.

Citation: Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071
References:
[1]

G. AkagiP. Juutinen and R. Kajikiya, Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Annalen, 343 (2009), 921-953.  doi: 10.1007/s00208-008-0297-1.  Google Scholar

[2]

G. Akagi and K. Suzuki, On a certain degenerate parabolic equation associated with the infinity-Laplacian, Discrete Contin. Dyn. Syst., (supplement), (2007), 18–27.  Google Scholar

[3]

G. Akagi and K. Suzuki, Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Calc. Var. and Partical Differential Equations, 31 (2008), 457-471.  doi: 10.1007/s00526-007-0117-6.  Google Scholar

[4]

G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)),, Ark. Mat., 6 (1965), 33-53.  doi: 10.1007/BF02591326.  Google Scholar

[5]

G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)), Ⅱ, Ark. Mat., 6 (1966), 409-431.  doi: 10.1007/BF02590964.  Google Scholar

[6]

G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.  doi: 10.1007/BF02591928.  Google Scholar

[7]

G. AronssonM. Crandall and P. Juutien, A tour of the theory of absolute minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[8]

F. Cao, Approximations dequations paraboliques par des schemas invariants; une theorie de linterpolation; applications au traitement dimages, PhD Thesis (in English), 2000. Google Scholar

[9]

V. CasellesJ. M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process, 7 (1998), 376-386.  doi: 10.1109/83.661188.  Google Scholar

[10]

M. G. CrandallL. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. and Partical Differential Equations, 13 (2001), 123-139.   Google Scholar

[11]

M. G. CrandallH. Ishii and P.-L Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall and P. Wang, Another way to say caloric. Dedicated to Philippe Benilan, J. Evol. Equ., 3 (2003), 653-672.  doi: 10.1007/s00028-003-0146-3.  Google Scholar

[13]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 1-74.  doi: 10.1007/BF00386368.  Google Scholar

[14]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851.  doi: 10.1007/s00208-006-0766-3.  Google Scholar

[15]

O. A. Ladyženskaya, V. A. Solommikov and N. N. Urall'ceva, Linear and Quasilinear Equations of Parabolic Type, in Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., (1967).  Google Scholar

[16]

P. Lindqvist, Notes on the Infinity Laplace Equation(SpringerBriefs in Mathematics), Springer, (2016). doi: 10.1007/978-3-319-31532-4.  Google Scholar

[17]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the $p$-Laplace diffusion equation, Comm. Partial Differential Equations, 22 (1997), 381-411.  doi: 10.1080/03605309708821268.  Google Scholar

[18]

M. Portilheiro and J. L. Vázquez, A porous medium equation involving the infinity-Laplacian, Viscosity solutions and asymptotic behaviour, Comm. Partial Differential Equations, 37 (2012), 753-793.  doi: 10.1080/03605302.2012.662665.  Google Scholar

[19]

M. Portilheiro and J. L. Vázquez, Degenerate homogeneous parabolic equations associated with the infinity-Laplacian, Calc. Var. and Partial Differential Equations, 31 (2012), 457-471.  doi: 10.1007/s00526-012-0500-9.  Google Scholar

show all references

References:
[1]

G. AkagiP. Juutinen and R. Kajikiya, Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Math. Annalen, 343 (2009), 921-953.  doi: 10.1007/s00208-008-0297-1.  Google Scholar

[2]

G. Akagi and K. Suzuki, On a certain degenerate parabolic equation associated with the infinity-Laplacian, Discrete Contin. Dyn. Syst., (supplement), (2007), 18–27.  Google Scholar

[3]

G. Akagi and K. Suzuki, Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian, Calc. Var. and Partical Differential Equations, 31 (2008), 457-471.  doi: 10.1007/s00526-007-0117-6.  Google Scholar

[4]

G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)),, Ark. Mat., 6 (1965), 33-53.  doi: 10.1007/BF02591326.  Google Scholar

[5]

G. Aronsson, Minimization problems for the functional supxF(x, f(x), f'(x)), Ⅱ, Ark. Mat., 6 (1966), 409-431.  doi: 10.1007/BF02590964.  Google Scholar

[6]

G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.  doi: 10.1007/BF02591928.  Google Scholar

[7]

G. AronssonM. Crandall and P. Juutien, A tour of the theory of absolute minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[8]

F. Cao, Approximations dequations paraboliques par des schemas invariants; une theorie de linterpolation; applications au traitement dimages, PhD Thesis (in English), 2000. Google Scholar

[9]

V. CasellesJ. M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process, 7 (1998), 376-386.  doi: 10.1109/83.661188.  Google Scholar

[10]

M. G. CrandallL. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. and Partical Differential Equations, 13 (2001), 123-139.   Google Scholar

[11]

M. G. CrandallH. Ishii and P.-L Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall and P. Wang, Another way to say caloric. Dedicated to Philippe Benilan, J. Evol. Equ., 3 (2003), 653-672.  doi: 10.1007/s00028-003-0146-3.  Google Scholar

[13]

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 1-74.  doi: 10.1007/BF00386368.  Google Scholar

[14]

P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann., 335 (2006), 819-851.  doi: 10.1007/s00208-006-0766-3.  Google Scholar

[15]

O. A. Ladyženskaya, V. A. Solommikov and N. N. Urall'ceva, Linear and Quasilinear Equations of Parabolic Type, in Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., (1967).  Google Scholar

[16]

P. Lindqvist, Notes on the Infinity Laplace Equation(SpringerBriefs in Mathematics), Springer, (2016). doi: 10.1007/978-3-319-31532-4.  Google Scholar

[17]

M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the $p$-Laplace diffusion equation, Comm. Partial Differential Equations, 22 (1997), 381-411.  doi: 10.1080/03605309708821268.  Google Scholar

[18]

M. Portilheiro and J. L. Vázquez, A porous medium equation involving the infinity-Laplacian, Viscosity solutions and asymptotic behaviour, Comm. Partial Differential Equations, 37 (2012), 753-793.  doi: 10.1080/03605302.2012.662665.  Google Scholar

[19]

M. Portilheiro and J. L. Vázquez, Degenerate homogeneous parabolic equations associated with the infinity-Laplacian, Calc. Var. and Partial Differential Equations, 31 (2012), 457-471.  doi: 10.1007/s00526-012-0500-9.  Google Scholar

[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[3]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[4]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[5]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[6]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[11]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[14]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[16]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[17]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[20]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (115)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]