March  2020, 19(3): 1795-1845. doi: 10.3934/cpaa.2020073

The mathieu differential equation and generalizations to infinite fractafolds

1. 

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

2. 

Department of Mathematics, Indiana University Bloomington, Bloomington, IN 47405, USA

3. 

Department of Mathematics, The University of Hong Kong, Hong Kong

4. 

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

* Corresponding author

Received  April 2019 Revised  August 2019 Published  November 2019

Fund Project: This research was hosted by the Cornell University Department of Mathematics through its 2018 Summer Program for Undergraduate Research. Anthony Coniglio's participation in this research was partly supported by Indiana University Bloomington. Xueyan Niu's participation in this research was partly supported by the Overseas Research Fellowship (ORF) of Faculty of Science, The University of Hong Kong

One of the well-studied equations in the theory of ODEs is the Mathieu differential equation. A common approach for obtaining solutions is to seek solutions via Fourier series by converting the equation into an infinite system of linear equations for the Fourier coefficients. We study the asymptotic behavior of these Fourier coefficients and discuss the ways in which to numerically approximate solutions. We present both theoretical and numerical results pertaining to the stability of the Mathieu differential equation and the properties of solutions. Further, based on the idea of using Fourier series, we provide a method in which the Mathieu differential equation can be generalized to be defined on the infinite Sierpinski gasket. We discuss the stability of solutions to this fractal differential equation and describe further results concerning properties and behavior of these solutions.

Citation: Shiping Cao, Anthony Coniglio, Xueyan Niu, Richard H. Rand, Robert S. Strichartz. The mathieu differential equation and generalizations to infinite fractafolds. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1795-1845. doi: 10.3934/cpaa.2020073
References:
[1]

N. AsaiD. CaiY. Ikebe and Y. Miyazaki, The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application, Linear Algebra Appl., 241 (1996), 599-618.  doi: 10.1016/0024-3795(95)00699-0.  Google Scholar

[2]

J. Avron and B. Simon, The asymptotics of the gap in the mathieu equation, Ann. Physics, 134 (1981), 76-84.  doi: 10.1016/0003-4916(81)90005-1.  Google Scholar

[3]

O. Ben-BassatR. Strichartz and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal., 166 (1999), 197-217.  doi: 10.1006/jfan.1999.3431.  Google Scholar

[4]

K. DalrympleR. Strichartz and J. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl., 5 (1999), 203-284.  doi: 10.1007/BF01261610.  Google Scholar

[5]

K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, 2014.  Google Scholar

[6]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992), 1-35.  doi: 10.1007/BF00249784.  Google Scholar

[7]

A. Gil, J. Segura and N. Temme, Numerical Methods for Special Functions, vol. 99, Society for Industrial and Applied Mathematics, 2007. doi: 10.1137/1.9780898717822.  Google Scholar

[8]

B. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc. (3), 78 (1999), 431-458.  doi: 10.1112/S0024611599001744.  Google Scholar

[9]

H. Hochstadt, On the width of the instability intervals of the mathieu equation, SIAM J. Math. Anal., 15 (1984), 105-107.  doi: 10.1137/0515005.  Google Scholar

[10]

J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[11]

M. IonescuL. Rogers and R. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam., 29 (2013), 1159-1190.  doi: 10.4171/RMI/752.  Google Scholar

[12]

J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math., 6 (1989), 259-290.  doi: 10.1007/BF03167882.  Google Scholar

[13]

J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721-755.  doi: 10.2307/2154402.  Google Scholar

[14]

J. Kigami, Analysis on Fractals, vol. 143 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[15]

D. Levy and J. Keller, Instability intervals of Hill's equation, Comm. Pure Appl. Math., 16 (1963), 469-476.  doi: 10.1002/cpa.3160160406.  Google Scholar

[16]

W. Loud, Stability regions for Hill's equation, J. Differential Equations, 19 (1975), 226-241.  doi: 10.1016/0022-0396(75)90003-0.  Google Scholar

[17]

R. Rand, Mathieu's Equation, International Centre for Mechanical Sciences, 2016. Google Scholar

[18]

H. Ruan and R. Strichartz, Covering maps and periodic functions on higher dimensional Sierpinski gaskets, Canad. J. Math., 61 (2009), 1151-1181.  doi: 10.4153/CJM-2009-054-5.  Google Scholar

[19]

J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, vol. 2, New York: Interscience Publishers, 1950.  Google Scholar

[20]

R. Strichartz, Fractals in the large, Can. J. Math., 50 (1996), 638-657.  doi: 10.4153/CJM-1998-036-5.  Google Scholar

[21]

R. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc., 355 (2003), 4019-4043.  doi: 10.1090/S0002-9947-03-03171-4.  Google Scholar

[22] R. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006.   Google Scholar
[23]

R. Strichartz, Periodic and almost periodic functions on infinite Sierpinski gaskets, Canad. J. Math., 61 (2009), 1182-1200.  doi: 10.4153/CJM-2009-055-9.  Google Scholar

[24]

R. Strichartz and A. Teplyaev, Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math., 116 (2012), 255-297.  doi: 10.1007/s11854-012-0007-5.  Google Scholar

[25]

A. Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159 (1998), 537-567.  doi: 10.1006/jfan.1998.3297.  Google Scholar

[26]

M. Weinstein and J. Keller, Asymptotic behavior of stability regions for Hill's equation, J. Appl. Math., 47 (1987), 941-958.  doi: 10.1137/0147062.  Google Scholar

show all references

References:
[1]

N. AsaiD. CaiY. Ikebe and Y. Miyazaki, The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application, Linear Algebra Appl., 241 (1996), 599-618.  doi: 10.1016/0024-3795(95)00699-0.  Google Scholar

[2]

J. Avron and B. Simon, The asymptotics of the gap in the mathieu equation, Ann. Physics, 134 (1981), 76-84.  doi: 10.1016/0003-4916(81)90005-1.  Google Scholar

[3]

O. Ben-BassatR. Strichartz and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal., 166 (1999), 197-217.  doi: 10.1006/jfan.1999.3431.  Google Scholar

[4]

K. DalrympleR. Strichartz and J. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl., 5 (1999), 203-284.  doi: 10.1007/BF01261610.  Google Scholar

[5]

K. Falconer, Fractal Geometry, John Wiley & Sons, Chichester, 2014.  Google Scholar

[6]

M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1 (1992), 1-35.  doi: 10.1007/BF00249784.  Google Scholar

[7]

A. Gil, J. Segura and N. Temme, Numerical Methods for Special Functions, vol. 99, Society for Industrial and Applied Mathematics, 2007. doi: 10.1137/1.9780898717822.  Google Scholar

[8]

B. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc. (3), 78 (1999), 431-458.  doi: 10.1112/S0024611599001744.  Google Scholar

[9]

H. Hochstadt, On the width of the instability intervals of the mathieu equation, SIAM J. Math. Anal., 15 (1984), 105-107.  doi: 10.1137/0515005.  Google Scholar

[10]

J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[11]

M. IonescuL. Rogers and R. Strichartz, Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam., 29 (2013), 1159-1190.  doi: 10.4171/RMI/752.  Google Scholar

[12]

J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math., 6 (1989), 259-290.  doi: 10.1007/BF03167882.  Google Scholar

[13]

J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., 335 (1993), 721-755.  doi: 10.2307/2154402.  Google Scholar

[14]

J. Kigami, Analysis on Fractals, vol. 143 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[15]

D. Levy and J. Keller, Instability intervals of Hill's equation, Comm. Pure Appl. Math., 16 (1963), 469-476.  doi: 10.1002/cpa.3160160406.  Google Scholar

[16]

W. Loud, Stability regions for Hill's equation, J. Differential Equations, 19 (1975), 226-241.  doi: 10.1016/0022-0396(75)90003-0.  Google Scholar

[17]

R. Rand, Mathieu's Equation, International Centre for Mechanical Sciences, 2016. Google Scholar

[18]

H. Ruan and R. Strichartz, Covering maps and periodic functions on higher dimensional Sierpinski gaskets, Canad. J. Math., 61 (2009), 1151-1181.  doi: 10.4153/CJM-2009-054-5.  Google Scholar

[19]

J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, vol. 2, New York: Interscience Publishers, 1950.  Google Scholar

[20]

R. Strichartz, Fractals in the large, Can. J. Math., 50 (1996), 638-657.  doi: 10.4153/CJM-1998-036-5.  Google Scholar

[21]

R. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc., 355 (2003), 4019-4043.  doi: 10.1090/S0002-9947-03-03171-4.  Google Scholar

[22] R. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006.   Google Scholar
[23]

R. Strichartz, Periodic and almost periodic functions on infinite Sierpinski gaskets, Canad. J. Math., 61 (2009), 1182-1200.  doi: 10.4153/CJM-2009-055-9.  Google Scholar

[24]

R. Strichartz and A. Teplyaev, Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math., 116 (2012), 255-297.  doi: 10.1007/s11854-012-0007-5.  Google Scholar

[25]

A. Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159 (1998), 537-567.  doi: 10.1006/jfan.1998.3297.  Google Scholar

[26]

M. Weinstein and J. Keller, Asymptotic behavior of stability regions for Hill's equation, J. Appl. Math., 47 (1987), 941-958.  doi: 10.1137/0147062.  Google Scholar

Figure 1.  Stable and Unstable Regions of the $ \delta $-$ \varepsilon $ plane
Figure 2.  Curves corresponding to expansions of larger periods: curves with $ 2\pi $-periodic solutions (black solid and black dashed), curves with $ 4\pi $-periodic solutions (orange solid and orange dashed), curves with $ 8\pi $-periodic solutions (red dashed) and curves with $ 16\pi $-periodic solutions (blue dashed)
Figure 3.  The width of the $ 5 $th stable band
Figure 4.  The width of first $ 5 $ stable bands
Figure 5.  The width of $ 6 $th and $ 7 $th stable bands
Figure 6.  The triangle area corresponding to $ R_{w_1},R_{w_2},R_{w_3}, $ and $ R_{w_4} $. The green area is the stable region, and shaded area is the unstable region
Figure 7.  Probabilities $ P_i $ and the fitting curve
Figure 8.  Normalized solutions corresponding to $ p(\sin t,0) $ (solid black), $ p(\sin t,5) $ (red), $ p(\sin t,10) $ (orange), $ p(\sin t,20) $ (green), $ p(\sin t,40) $ (blue), $ p(\sin t,80) $ (purple)
Figure 9.  Normalized solutions corresponding to $ p(\sin 2t,0) $ (solid black), $ p(\sin 2t,5) $ (red), $ p(\sin 2t,10) $ (orange), $ p(\sin 2t,20) $ (green), $ p(\sin 2t,40) $ (blue), $ p(\sin 2t,80) $ (purple)
Figure 10.  Normalized solutions corresponding to $ p(\sin 3t,0) $ (solid black), $ p(\sin 3t,5) $ (red), $ p(\sin 3t,10) $ (orange), $ p(\sin 3t,20) $ (green), $ p(\sin 3t,40) $ (blue), $ p(\sin 3t,80) $ (purple)
Figure 11.  t-position of maximal points, with fitting curve $ t = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $
Figure 12.  t-position of the second maximal points, with fitting curve $ t = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $
Figure 13.  t-position of the third maximal points on curve $ p(\sin 3t, \varepsilon) $, with fitting curve $ t = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $, $ a = 9.567,b = 23.07,c = 22.86,d = 40.46 $
Figure 14.  u-position of the second maximal points on curve $ p(\sin 2t, \varepsilon) $, with fitting curve $ t = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^2+d \varepsilon+e} $. $ a = 0.8393,b = -0.5638,c = 5.566,d = -0.1973,e = 5.571 $
Figure 15.  u-position of the second and third maximal points corresponding to curve $ p(\sin 3t, \varepsilon) $, with fitting curve $ u = \frac{a \varepsilon^3+b \varepsilon^2+c \varepsilon+d}{ \varepsilon^3+e \varepsilon^2+f \varepsilon+g} $
Figure 16.  Normalized solutions corresponding to $ p(\cos 0t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,10,20,40,80,160 $
Figure 17.  Normalized solutions corresponding to $ p(\cos t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,10 $ in the left graph, and $ \varepsilon = 10,20,40,80,160 $ in the right graph
Figure 18.  Normalized solutions corresponding to $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,6 $ in the left, and $ \varepsilon = 6,7,8,9,10,20,30,40,60,80,100,160 $ in the right
Figure 19.  The $ u $ coordinate of minimum points of solutions for points $ p(\cos 0, \varepsilon) $, with $ \varepsilon = 0,1,\cdots, 200 $. Fitting curve $ u = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $, with $ a = -0.02171,b = 0.2895,c = 0.2289,d = 0.2895 $
Figure 20.  The $ t $ coordinate of minimum points of solutions for points $ p(\cos t, \varepsilon) $, with $ \varepsilon = 2,\cdots, 200 $. Fitting curve $ y = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $, with $ a = 241,9,b = 1284,c = 310.8,d = 177.1 $
Figure 21.  The $ u $ coordinate of minimum points of solutions for points $ p(\cos t, \varepsilon) $, with $ \varepsilon = 0,1,2,\cdots, 200 $. Fitting curve $ u = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^2+d \varepsilon+e} $, with $ a = 0.8687,b = -1.631,c = 0.8498,d = -1.72 $ and $ e = 0.8497 $
Figure 22.  The $ u $ coordinate of minimum points of solutions for points $ p(\cos t, \varepsilon) $, with $ \varepsilon = 0,1,2,\cdots, 200 $. Fitting curve $ u = \frac{a \varepsilon+b}{ \varepsilon^2+c \varepsilon+d} $, with $ a = 0.2495,b = -4.991,c = -3.037,d = 6.722 $
Figure 23.  The $ t $ coordinate of maximum points of solutions for points $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 5,6,\cdots, 200 $. Fitting curve $ t = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^2+d \varepsilon+e} $, with $ a = 0.5572,b = 88.5,c = -3.009,d = 55.35 $ and $ e = -157.7 $
Figure 24.  The $ t $ coordinate of the second peak of solutions for points $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 5,6,\cdots, 200 $. Fitting curve $ t = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^3+d \varepsilon^2+e \varepsilon+f} $, with $ a = 269.3,b = 4745,c = -9715,d = 641.3,e = -2040 $ and $ f = -6017 $
Figure 25.  The $ t $ coordinate of the second peak of solutions for points $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 1,2,\cdots, 200 $. Fitting curve $ t = \frac{a \varepsilon^3+b \varepsilon^2+c \varepsilon+d}{ \varepsilon^3+e \varepsilon^2+f \varepsilon+g} $, with $ a = 0.7931,b = -4.642,c = 6.596,d = 13.45,e = --5.508,f = 9.829 $ and $ g = 13.44 $
Figure 26.  The $ t $ coordinate of the second peak of solutions for points $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 1,2,\cdots, 200 $. Fitting curve $ y = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^2+e \varepsilon+f} $, with $ a = -0.006875,b = 0.7009,c = -8.537,d = -2.457,e = 8.857 $
Figure 27.  The $ t $ coordinate of the second peak of solutions for points $ p(\cos 2t, \varepsilon) $, with $ \varepsilon = 5,6,\cdots, 200 $. Fitting curve $ y = \frac{a \varepsilon^2+b \varepsilon+c}{ \varepsilon^3+d \varepsilon^2+e \varepsilon+f} $, with $ a = 0.2268,b = -25.1,c = 587.7,d = 4.775,e = -156 $ and $ f = 1002 $
Figure 28.  Normalized solutions corresponding to $ p(\sin \frac12t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,10,20,40,80,160 $
Figure 29.  Normalized solutions corresponding to $ p(\sin\frac32t, \varepsilon) $, with $ \varepsilon = 0,5,10,20,40,80,160 $
Figure 30.  Normalized solutions corresponding to $ p(\cos \frac12t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,10,20,40,80,160 $
Figure 31.  Normalized solutions corresponding to $ p(\cos \frac32t, \varepsilon) $, with $ \varepsilon = 0,1,2,3,4,5,10,20,40,80,160 $
Figure 32.  The Sierpinski Gasket
Figure 33.  Approximating graphs $ \Gamma_0,\Gamma_1,\Gamma_2 $
Figure 34.  Transition curves for version 1, 5-series. The left picture shows transition curves of a single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 35.  Transition curves for version 1, 6-series. The left picture shows transition curves of a single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 36.  Transition curves for version 2, 5-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 37.  Transition curves for version 2, 6-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 38.  Transition curves for version 3, 5-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 39.  Transition curves for version 3, 6-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 40.  Transition curves for version 4, 5-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 41.  Transition curves for version 4, 6-series. The left picture shows transition curves of single matrix corresponding to generation of birth $ 0 $. The right picture shows transition curves of generation of birth 0 (red), -1 (blue), -2 (green), -3 (orange), -4 (black)
Figure 42.  Initial values of the eigenfunctions with birth of generation $ 2 $ and initial eigenvalues $ 5 $ (left) and $ 6 $(right)
Figure 43.  Solutions on the first curve for Version 1, initial eigenvalue $ 5 $, with $ \varepsilon = 1000,2000,3000 $
Figure 44.  Solutions on the first curve for Version 1, initial eigenvalue $ 5 $, with $ \varepsilon = 10000,11000,12000 $
Figure 45.  Solutions on the first curve for Version 1, initial eigenvalue $ 5 $, with $ \varepsilon = 20000,25000,30000 $
Figure 46.  Solutions on the first curve for Version 1, initial eigenvalue $ 6 $, with $ \varepsilon = 1000,2000,3000 $
Figure 47.  Solutions on the first curve for Version 1, initial eigenvalue $ 6 $, with, with $ \varepsilon = 10000,11000,12000 $
Figure 48.  Solutions on the first curve for Version 1, initial eigenvalue $ 6 $, with $ \varepsilon = 20000,25000,30000 $
Figure 49.  The position of peaks for version 1, 5 series
Figure 50.  The position of peaks for version 1, 6-series
Table 1.  The probability $ P_i $'s
$ i $ $ P_i $
1 0.625056436387445
2 0.784428425813594
3 0.845139663995868
4 0.878143787704672
5 0.899154589232086
6 0.913800056779179
7 0.924632580597566
8 0.932988858616457
9 0.939640860147421
10 0.945067300763657
11 0.949581603650156
12 0.953397960289362
13 0.956667925443240
14 0.959502140424685
15 0.961982968671620
16 0.964174006346465
17 0.966133547589692
18 0.967239011961280
$ i $ $ P_i $
1 0.625056436387445
2 0.784428425813594
3 0.845139663995868
4 0.878143787704672
5 0.899154589232086
6 0.913800056779179
7 0.924632580597566
8 0.932988858616457
9 0.939640860147421
10 0.945067300763657
11 0.949581603650156
12 0.953397960289362
13 0.956667925443240
14 0.959502140424685
15 0.961982968671620
16 0.964174006346465
17 0.966133547589692
18 0.967239011961280
[1]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[2]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[3]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[4]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[5]

Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020

[6]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[7]

Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118

[8]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[9]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[10]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[11]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[12]

P. Alonso Ruiz, Y. Chen, H. Gu, R. S. Strichartz, Z. Zhou. Analysis on hybrid fractals. Communications on Pure & Applied Analysis, 2020, 19 (1) : 47-84. doi: 10.3934/cpaa.2020004

[13]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[14]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[15]

M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121

[16]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[17]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[18]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[19]

Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

[20]

Changfeng Gui, Zhenbu Zhang. Spike solutions to a nonlocal differential equation. Communications on Pure & Applied Analysis, 2006, 5 (1) : 85-95. doi: 10.3934/cpaa.2006.5.85

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (17)
  • Cited by (0)

[Back to Top]